S. Arthamonov, N. Ovenhouse, M. Shapiro, “Noncommutative Networks on a Cylinder”, Commun. Math. Phys., 405:5 (2024)
Emma Previato, Sonia L. Rueda, Maria-Angeles Zurro, “Burchnall–Chaundy polynomials for matrix ODOs and Picard–Vessiot Theory”, Physica D: Nonlinear Phenomena, 453 (2023), 133811
А. В. Домрин, “Голоморфные решения солитонных уравнений”, Тр. ММО, 82, № 2, МЦНМО, М., 2021, 227–312; A. V. Domrin, “Holomorphic solutions of soliton equations”, Trans. Moscow Math. Soc., 82 (2021), 193–258
Yuri Fedorov, Božidar Jovanović, “Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems”, DCDS, 41:6 (2021), 2559
Yu Hou, Engui Fan, “Algebro-geometric solutions for the two-component Hunter-Saxton hierarchy”, JNMP, 21:4 (2021), 473
Peng Zhao, Engui Fan, Yu Hou, “Algebro-Geometric Solutions and Their Reductions for the Fokas-Lenells Hierarchy”, JNMP, 20:3 (2021), 355
Chao Yue, Tiecheng Xia, Wen-Xiu Ma, “Algebro-Geometric Solutions of the Coupled Chaffee-Infante Reaction Diffusion Hierarchy”, Advances in Mathematical Physics, 2021 (2021), 1
Dubrovin B., “Algebraic Spectral Curves Over Q and Their Tau-Functions”, Integrable Systems and Algebraic Geometry: a Celebration of Emma Previato'S 65Th Birthday, Vol 2, London Mathematical Society Lecture Note Series, 459, ed. Donagi R. Shaska T., Cambridge Univ Press, 2020, 41–91
Qian Li, “Algebro-geometric solutions of the generalized Burgers hierarchy associated with a 3 × 3 matrix spectral problem based on Riemann surface”, Chaos, Solitons & Fractals, 130 (2020), 109409
A. O. Smirnov, V. S. Gerdjikov, V. B. Matveev, “From generalized Fourier transforms to spectral curves for the Manakov hierarchy. II. Spectral curves for the Manakov hierarchy”, Eur. Phys. J. Plus, 135:7 (2020)
Oganesyan V., “Matrix Commuting Differential Operators of Rank 2 and Arbitrary Genus”, Int. Math. Res. Notices, 2019, no. 3, 834–851
Stefan A. HOROCHOLYN, “ON THE GEOMETRY OF STAR-SHAPED CURVES IN R<i><sup>n </sup></i>”, Kyushu J. Math., 73:1 (2019), 123
В. С. Оганесян, “Иерархия АКНС и конечнозонные потенциалы Шредингера”, ТМФ, 196:1 (2018), 50–63; V. S. Oganesyan, “The AKNS hierarchy and finite-gap Schrödinger potentials”, Theoret. and Math. Phys., 196:1 (2018), 983–995
Yu Hou, Engui Fan, Zhijun Qiao, “The algebro-geometric solutions for the Fokas–Olver–Rosenau–Qiao (FORQ) hierarchy”, Journal of Geometry and Physics, 117 (2017), 105
Sonja Currie, Thomas T. Roth, Bruce A. Watson, “Borg's Periodicity Theorems for First-Order Self-Adjoint Systems with Complex Potentials”, Proceedings of the Edinburgh Mathematical Society, 60:3 (2017), 615
Б. Гайич, В. Драгович, Б. Йованович, “О полноте интегралов Манакова”, Фундамент. и прикл. матем., 20:2 (2015), 35–49; B. Gajić, V. Dragović, B. Jovanović, “On the completeness of the Manakov integrals”, J. Math. Sci., 223:6 (2017), 675–685
Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Note on Free Symmetric Rigid Body Motion”, Regul. Chaotic Dyn., 20:3 (2015), 293–308
Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Note on free symmetric rigid body motion”, Regul. Chaot. Dyn., 20:3 (2015), 293
Pavlov M.V., Sergyeyev A., “Oriented Associativity Equations and Symmetry Consistent Conjugate Curvilinear Coordinate Nets”, J. Geom. Phys., 85 (2014), 46–59
He G. Geng X. Wu L., “Algebro-Geometric Quasi-Periodic Solutions To the Three-Wave Resonant Interaction Hierarchy”, SIAM J. Math. Anal., 46:2 (2014), 1348–1384
Yu Hou, Engui Fan, Peng Zhao, “Algebro-geometric solutions for the Hunter–Saxton hierarchy”, Z. Angew. Math. Phys., 65:3 (2014), 487
Yu Hou, Engui Fan, “Algebro-geometric solutions for the two-component Camassa–Holm Dym hierarchy”, Chaos, Solitons & Fractals, 67 (2014), 43
Darryl D Holm, Rossen I Ivanov, “Matrix G-strands”, Nonlinearity, 27:6 (2014), 1445
Chao Yue, Tiecheng Xia, “Algebro-geometric solutions for the complex Sharma-Tasso-Olver hierarchy”, Journal of Mathematical Physics, 55:8 (2014)
Yu Hou, Peng Zhao, Engui Fan, Zhijun Qiao, “Algebro-geometric Solutions for the Degasperis–Procesi Hierarchy”, SIAM J. Math. Anal., 45:3 (2013), 1216
Г. А. Аминов, “Предельная связь цепочек Тоды с эллиптическим $SL(N,\mathbb C)$-волчком”, ТМФ, 171:2 (2012), 179–195; G. Aminov, “Limit relation between Toda chains and the elliptic $SL(N,\mathbb C)$ top”, Theoret. and Math. Phys., 171:2 (2012), 575–588
Wu L. He G. Geng X., “Algebro-Geometric Solutions to the Modified Sawada-Kotera Hierarchy”, J. Math. Phys., 53:12 (2012), 123513
Б. А. Дубровин, С. А. Зыков, М. В. Павлов, “Слабо нелинейные гамильтоновы уравнения в частных производных и новый класс решений уравнений ассоциативности WDVV”, Функц. анализ и его прил., 45:4 (2011), 49–64; B. A. Dubrovin, S. A. Zykov, M. V. Pavlov, “Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations”, Funct. Anal. Appl., 45:4 (2011), 278–290
G Aminov, S Arthamonov, “Reduction of the elliptic SL(N,\mathbb C) top”, J. Phys. A: Math. Theor., 44:7 (2011), 075201
Г. У. Браден, В. З. Энольский, “$\operatorname{SU}(2)$-монополи, кривые с симметриями и наследие Рамануджана”, Матем. сб., 201:6 (2010), 19–74; H. W. Braden, V. Z. Enolski, “$\operatorname{SU}(2)$-monopoles, curves with symmetries and Ramanujan's heritage”, Sb. Math., 201:6 (2010), 801–853
Г. У. Браден, В. З. Энольский, “Несколько замечаний о конструкции монополей Эрколани–Синха”, ТМФ, 165:3 (2010), 389–425; H. W. Braden, V. Z. Ènol'skii, “Some remarks on the Ercolani–Sinha construction of monopoles”, Theoret. and Math. Phys., 165:3 (2010), 1567–1597
V. Dragović, B. Gajić, B. Jovanović, “Singular Manakov flows and geodesic flows on homogeneous spaces of SO(N)”, Transformation Groups, 14:3 (2009), 513
Ю. В. Брежнев, “Конечнозонные потенциалы с тригональными кривыми”, ТМФ, 133:3 (2002), 398–404; Yu. V. Brezhnev, “Finite-Band Potentials with Trigonal Curves”, Theoret. and Math. Phys., 133:3 (2002), 1657–1662
Gesztesy, F, “Uniqueness results for matrix-valued Schrodinger, Jacobi, and Dirac-type operators”, Mathematische Nachrichten, 239 (2002), 103
Clark, S, “Weyl-Titchmarsh M-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators”, Transactions of the American Mathematical Society, 354:9 (2002), 3475
Ronnie Dickson, Fritz Gesztesy, Karl Unterkofler, “A New Approach to the Boussinesq Hierarchy”, Mathematische Nachrichten, 198:1 (1999), 51
R. DICKSON, F. GESZTESY, K. UNTERKOFLER, “ALGEBRO-GEOMETRIC SOLUTIONS OF THE BOUSSINESQ HIERARCHY”, Rev. Math. Phys., 11:07 (1999), 823
F. Gesztesy, R. Ratnaseelan, “An Alternative Approach to Algebro-Geometric Solutions of the AKNS Hierarchy”, Rev. Math. Phys., 10:03 (1998), 345
A. S. Fokas, “Интегрируемость и вокруг”, Зап. научн. сем. ПОМИ, 235 (1996), 235–244; A. S. Fokas, “Integrability and beyond”, J. Math. Sci. (New York), 94:4 (1999), 1593–1599
F Guil, M Manas, “AKNS hierarchy, self-similarity, string equations and the Grassmannian”, J. Phys. A: Math. Gen., 27:6 (1994), 2129
B. A. Dubrovin, A. S. Fokas, P. M. Santini, Springer Series in Nonlinear Dynamics, Nonlinear Processes in Physics, 1993, 329
B. Dubrovin, “Geometry and integrability of topological-antitopological fusion”, Commun.Math. Phys., 152:3 (1993), 539
О. И. Богоявленский, “Уравнение Эйлера на конечномерных коалгебрах Ли, возникающие в задачах математической физики”, УМН, 47:1(283) (1992), 107–146; O. I. Bogoyavlenskii, “Euler equations on finite-dimensional Lie coalgebras, arising in problems of mathematical physics”, Russian Math. Surveys, 47:1 (1992), 117–189
P M Santini, “Integrable nonlinear evolution equations with constraints: I”, Inverse Problems, 8:2 (1992), 285
B Dubrovin, “Integrable systems in topological field theory”, Nuclear Physics B, 379:3 (1992), 627
О. И. Богоявленский, “Алгебраические конструкции интегрируемых дннамических систем – расширение системы Вольтерра.”, УМН, 46:3(279) (1991), 3–48; O. I. Bogoyavlenskii, “Algebraic constructions of integrable dynamical systems-extensions of the Volterra system”, Russian Math. Surveys, 46:3 (1991), 1–64
А. П. Веселов, “Интегрируемые отображения”, УМН, 46:5(281) (1991), 3–45; A. P. Veselov, “Integrable maps”, Russian Math. Surveys, 46:5 (1991), 1–51
О. И. Богоявленский, “Теорема о двух коммутирующих автоморфизмах и интегрируемые дифференциальные уравнения”, Изв. АН СССР. Сер. матем., 54:2 (1990), 258–274; O. I. Bogoyavlenskii, “A theorem on two commuting automorphisms, and integrable differential equations”, Math. USSR-Izv., 36:2 (1991), 263–279
Б. А. Дубровин, “К дифференциальной геометрии сильно интегрируемых систем гидродинамического типа”, Функц. анализ и его прил., 24:4 (1990), 25–30; B. A. Dubrovin, “Differential geometry of strongly integrable systems of hydrodynamic type”, Funct. Anal. Appl., 24:4 (1990), 280–285
Alexander P. Veselov, “Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space”, Journal of Geometry and Physics, 7:1 (1990), 81
P M Santini, “Solvable nonlinear algebraic equations”, Inverse Problems, 6:4 (1990), 665
В. И. Иноземцев, “Матричные аналоги эллиптических функций”, Функц. анализ и его прил., 23:4 (1989), 81–82; V. I. Inozemtsev, “Matrix analogues of elliptic functions”, Funct. Anal. Appl., 23:4 (1989), 323–325
Б. А. Дубровин, С. М. Натанзон, “Вещественные тэта-функциональные решения уравнения Кадомцева–Петвиашвили”, Изв. АН СССР. Сер. матем., 52:2 (1988), 267–286; B. A. Dubrovin, S. M. Natanzon, “Real theta-function solutions of the Kadomtsev–Petviashvili equation”, Math. USSR-Izv., 32:2 (1989), 269–288
B. A. Dubrovin, Lecture Notes in Mathematics, 1334, Global Analysis — Studies and Applications III, 1988, 42
О. И. Богоявленский, “Интегрируемые уравнения Эйлера на алгебрах Ли, возникающие в задачах математической физики”, Изв. АН СССР. Сер. матем., 48:5 (1984), 883–938; O. I. Bogoyavlenskii, “Integrable Euler equations on Lie algebras arising in problems of mathematical physics”, Math. USSR-Izv., 25:2 (1985), 207–257
В. В. Трофимов, А. Т. Фоменко, “Интегрируемость по Лиувиллю гамильтоновых систем на алгебрах Ли”, УМН, 39:2(236) (1984), 3–56; V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39:2 (1984), 1–67
D. V. Chudnovsky, Lecture Notes in Physics, 180, Group Theoretical Methods in Physics, 1983, 65
С. П. Новиков, “Гамильтонов формализм и многозначный аналог теории Морса”, УМН, 37:5(227) (1982), 3–49; S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56
Б. А. Дубровин, “Тэта-функции и нелинейные уравнения”, УМН, 36:2(218) (1981), 11–80; B. A. Dubrovin, “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92
И. М. Кричевер, “Методы алгебраической геометрии в теории нелинейных
уравнений”, УМН, 32:6(198) (1977), 183–208; I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213