O.L. Rebenko, MATHEMATICAL FOUNDATIONS OF MODERN STATISTICAL MECHANICS, 2024
Steffen Betsch, “Structural Properties of Gibbsian Point Processes in Abstract Spaces”, J Theor Probab, 36:4 (2023), 2501
Jean-René Chazottes, Gerhard Keller, Encyclopedia of Complexity and Systems Science Series, Ergodic Theory, 2023, 369
Jung-Chao Ban, Chih-Hung Chang, Yu-Liang Wu, Yu-Ying Wu, “Stem and topological entropy on Cayley trees”, Math Phys Anal Geom, 25:1 (2022)
A. L. Rebenko, “On the Relationships between Some Approaches to the Solution of Kirkwood–Salsburg Equations”, Ukr Math J, 73:3 (2021), 447
Jean-René Chazottes, Gerhard Keller, Encyclopedia of Complexity and Systems Science, 2021, 1
Hiroki Takahasi, “Uniqueness of Minimizer for Countable Markov Shifts and Equidistribution of Periodic Points”, J Stat Phys, 181:6 (2020), 2415
Azer Kerimov, “A disagreement-percolation type uniqueness condition for Gibbs states in models with long-range interactions”, J. Stat. Mech., 2014:10 (2014), P10014
AHMET SENSOY, “ONE-DIMENSIONAL LONG RANGE WIDOM–ROWLINSON MODEL WITH PERIODIC PARTICLE ACTIVITIES”, Mod. Phys. Lett. B, 27:30 (2013), 1350218
Leonid Bogachev, Alexei Daletskii, “Gibbs cluster measures on configuration spaces”, Journal of Functional Analysis, 264:2 (2013), 508
Jean-René Chazottes, Gerhard Keller, Mathematics of Complexity and Dynamical Systems, 2012, 1422
Gibbs Measures and Phase Transitions, 2011, 495
Feynman-Kac-Type Theorems and Gibbs Measures on Path Space, 2011, 473
Jean Bellissard, Charles Radin, Senya Shlosman, “The characterization of ground states”, J. Phys. A: Math. Theor., 43:30 (2010), 305001
MYRIAM FRADON, SYLVIE RŒLLY, “INFINITELY MANY BROWNIAN GLOBULES WITH BROWNIAN RADII”, Stoch. Dyn., 10:04 (2010), 591
Marek Biskup, Roman Kotecký, “True nature of long-range order in a plaquette orbital model”, J. Stat. Mech., 2010:11 (2010), P11001
Jean-René Chazottes, Gerhard Keller, Encyclopedia of Complexity and Systems Science, 2009, 6939
Myriam Fradon, Sylvie Rœlly, “Infinite system of Brownian balls with interaction: the non-reversible case”, ESAIM: PS, 11 (2007), 55
AZER KERIMOV, “ONE-DIMENSIONAL NON-SYMMETRIC WIDOM–ROWLINSON MODEL WITH LONG-RANGE INTERACTION”, Mod. Phys. Lett. B, 21:09 (2007), 559
MYRIAM FRADON, SYLVIE ROELLY, “INFINITE SYSTEM OF BROWNIAN BALLS: EQUILIBRIUM MEASURES ARE CANONICAL GIBBS”, Stoch. Dyn., 06:01 (2006), 97
Azer Kerimov, “The relationship between phase transitions and percolation in models with ground-state degeneracy”, J. Phys. A: Math. Gen., 35:26 (2002), 5365
Andrea Pallini, “Resampling configurations of points through coding schemes”, J. Ital. Statist. Soc., 9:1-3 (2000), 159
Etienne Bertin, Jean-Michel Billiot, Rémy Drouilhet, “Existence of ‘nearest-neighbour' spatial Gibbs models”, Advances in Applied Probability, 31:4 (1999), 895
Rick Durrett, “Stochastic Spatial Models”, SIAM Rev., 41:4 (1999), 677
LUIGI ACCARDI, VOLKMAR LIEBSCHER, “MARKOVIAN KMS-STATES FOR ONE-DIMENSIONAL SPIN CHAINS”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 02:04 (1999), 645
Р. А. Минлос, “Р. Л. Добрушин – один из основоположников современной математической физики”, УМН, 52:2(314) (1997), 13–18; R. A. Minlos, “R. L. Dobrushin – one of the founders of modern mathematical physics”, Russian Math. Surveys, 52:2 (1997), 251–256
R. Fernández, C.-E. Pfister, “Global specifications and nonquasilocality of projections of Gibbs measures”, Ann. Probab., 25:3 (1997)
А. И. Кириллов, “О задании мер на функциональных пространствах с помощью числовых плотностей
и континуальных интервалов”, Матем. заметки, 53:5 (1993), 152–157; A. I. Kirillov, “Prescription of measures on functional spaces by means of numerical densities and path integrals”, Math. Notes, 53:5 (1993), 555–557
Arkady Tempelman, Ergodic Theorems for Group Actions, 1992, 264
Koji Kuroda, Hideki Tanemura, “Limit theorem and large deviation principle for the Voronoi tessellation generated by a Gibbs point process”, Advances in Applied Probability, 24:1 (1992), 45
Koji Kuroda, Hideki Tanemura, “Limit theorem and large deviation principle for the Voronoi tessellation generated by a Gibbs point process”, Adv. Appl. Probab., 24:01 (1992), 45
Karl-Heinz Fichtner, Wolfgang Freudenberg, “Characterization of states of infinite boson systems”, Commun.Math. Phys., 137:2 (1991), 315
Roman Gielerak, “Existence of the transfer matrix formalism for a class of classical continuous gases”, J Stat Phys, 55:1-2 (1989), 183
R Gielerak, “Remarks on the non-compact spin systems”, J. Phys. A: Math. Gen., 22:11 (1989), 1899
Gibbs Measures and Phase Transitions, 1988
David K. Pickard, “Inference for Discrete Markov Fields: The Simplest Nontrivial Case”, Journal of the American Statistical Association, 82:397 (1987), 90
Б. М. Гуревич, “Инвариантные меры динамических систем статистической
механики и первые интегралы гамильтоновых систем с конечным
числом степеней свободы”, УМН, 41:2(248) (1986), 193–194; B. M. Gurevich, “In ariant measures of dynamical systems of statistical mechanics and first integrals of Hamiltonian systems with finitely many degrees of freedom”, Russian Math. Surveys, 41:2 (1986), 201–202
С. Б. Шлосман, “Метод отражательной положительности в математической
теории фазовых переходов первого рода”, УМН, 41:3(249) (1986), 69–111; S. B. Shlosman, “The method of reflection positivity in the mathematical theory of first-order phase transitions”, Russian Math. Surveys, 41:3 (1986), 83–134
S. Albeverio, R. Høegh-Krohn, “Local and global Markoff fields”, Reports on Mathematical Physics, 19:2 (1984), 225
Shigeru Mase, “Locally asymptotic normality of Gibbs models on a lattice”, Advances in Applied Probability, 16:3 (1984), 585
Ю. М. Сухов, “Стационарные решения цепочки уравнений Боголюбова и первые интегралы движения системы классических частиц. Одномерный случай”, ТМФ, 55:1 (1983), 78–87; Yu. M. Sukhov, “Steady solutions of the BBGKY hierarchy and first integrals of the motion of a system of classical particles One-dimensional case”, Theoret. and Math. Phys., 55:1 (1983), 365–372
В. А. Загребнов, “Теорема Боголюбова–Рюэля: новое доказательство и обобщения”, ТМФ, 51:3 (1982), 389–402; V. A. Zagrebnov, “A new proof and generalization of the Bogolyubov–Ruelle theorem”, Theoret. and Math. Phys., 51:3 (1982), 570–579
David K. Pickard, “Inference for general Ising models”, Journal of Applied Probability, 19:A (1982), 345
Jean Bellissard, Raphael H�egh-Krohn, “Compactness and the maximal Gibbs state for random Gibbs fields on a lattice”, Commun.Math. Phys., 84:3 (1982), 297
В. В. Криволапова, Г. И. Назин, “Метод производящего функционала и гиббсовские случайные поля на счетных множествах”, ТМФ, 47:3 (1981), 362–374; V. V. Krivolapova, G. I. Nazin, “Generating functional method and Gibbs random fields on countable sets”, Theoret. and Math. Phys., 47:3 (1981), 514–532
V.A. Zagrebnov, “On the solutions of correlation equations for classical continuous systems”, Physica A: Statistical Mechanics and its Applications, 109:3 (1981), 403
S. Albeverio, R. Høegh-Krohn, G. Olsen, “The global Markov property for lattice systems”, Journal of Multivariate Analysis, 11:4 (1981), 599
R.F. Kayser, H.J. Raveché, “Equivalence of integral equations in the molecular theory of fluids”, Physica A: Statistical Mechanics and its Applications, 97:2 (1979), 399
Chris Preston, “Canonical and microcanonical Gibbs states”, Z. Wahrscheinlichkeitstheorie verw Gebiete, 46:2 (1979), 125
S. Albeverio, M. Ribeiro de Faria, R. H�egh-Krohn, “Stationary measures for the periodic Euler flow in two dimensions”, J Stat Phys, 20:6 (1979), 585
Sergio Albeverio, Raphael Høegh-Krohn, “The global Markov property for euclidean and lattice fields”, Physics Letters B, 84:1 (1979), 89
В. М. Герцик, “Условия неединственности гиббсовского состояния для решетчатых моделей с финитным потенциалом взаимодействия”, Изв. АН СССР. Сер. матем., 40:2 (1976), 448–462; V. M. Gercik, “Conditions for the nonuniqueness of the Gibbs state for lattice models having
finite interaction potentials”, Math. USSR-Izv., 10:2 (1976), 429–443
Nguyen Xuan Xanh, Hans Zessin, “Punktprozesse mit Wechselwirkung”, Z. Wahrscheinlichkeitstheorie verw Gebiete, 37:2 (1976), 91
Yu. M. Suhov, “Random point processes and DLR equations”, Commun.Math. Phys., 50:2 (1976), 113
Р. А. Минлос, Г. М. Натапов, “Единственность предельного распределения Гиббса в одномерных классических системах”, ТМФ, 24:1 (1975), 100–108; R. A. Minlos, G. M. Natapov, “Uniqueness of the limit Gibbs distribution in one-dimensional classical systems”, Theoret. and Math. Phys., 24:1 (1975), 697–703
Г. И. Назин, “Предельные функции распределения систем с многочастичным взаимодействием в классической статистической физике”, ТМФ, 25:1 (1975), 132–140; G. I. Nazin, “Limit distribution functions of systems with many-particle interaction in classical statistical physics”, Theoret. and Math. Phys., 25:1 (1975), 1029–1035
Sergio Albeverio, Raphael Høegh-Krohn, “Homogeneous random fields and statistical mechanics”, Journal of Functional Analysis, 19:3 (1975), 242
Р. Л. Добрушин, “Условия отсутствия фазовых переходов в одномерных классических системах”, Матем. сб., 93(135):1 (1974), 29–49; R. L. Dobrushin, “Conditions for the absence of phase transitions in one-dimensional classical systems”, Math. USSR-Sb., 22:1 (1974), 28–48
Я. Г. Синай, Ю. М. Сухов, “К теореме существования решений для цепочки уравнений Боголюбова”, ТМФ, 19:3 (1974), 344–363; Ya. G. Sinai, Yu. M. Sukhov, “Existence theorem for solutions of the Bogolyubov equations”, Theoret. and Math. Phys., 19:3 (1974), 560–573
Р. Л. Добрушин, Б. С. Нахапетян, “Сильная выпуклость давления для решетчатых
систем классической статистической физики”, ТМФ, 20:2 (1974), 223–234; R. L. Dobrushin, B. S. Nakhapetian, “Strong convexity of the pressure for lattice systems of classical statistical physics”, Theoret. and Math. Phys., 20:2 (1974), 782–790
Г. И. Назин, “Предельные функции распределения в классической статистической
физике”, ТМФ, 21:3 (1974), 388–401; G. I. Nazin, “Limit distribution functions in classical statistical physics”, Theoret. and Math. Phys., 21:3 (1974), 1223–1233
F. Guerra, L. Rosen, B. Simon, “Statistical mechanics results in the P(φ)2 quantum field theory”, Physics Letters B, 44:1 (1973), 102
Francesco Guerra, Lecture Notes in Physics, 25, Constructive Quantum Field Theory, 1973, 243
Я. Г. Синай, “Построение динамики в одномерных системах статистической механики”, ТМФ, 11:2 (1972), 248–258; Ya. G. Sinai, “Construction of dynamics in one-dimensional systems of statistical mechanics”, Theoret. and Math. Phys., 11:2 (1972), 487–494
Р. Л. Добрушин, “Асимптотическое поведение гиббсовских распределений для решетчатых
систем в зависимости от формы сосуда”, ТМФ, 12:1 (1972), 115–134; R. L. Dobrushin, “Asymptotic behavior of Gibbsian distributions for lattice systems and its dependence on the form of the volume”, Theoret. and Math. Phys., 12:1 (1972), 699–711
В. В. Аншелевич, “Единственность состояний, удовлетворяющих граничным
условиям Кубо–Мартина–Швингера, в случае одномерных квантовых
спиновых систем с финитным потенциалом”, ТМФ, 13:1 (1972), 120–130; V. V. Anshelevich, “Uniqueness of states satisfying Kubo–Martin–Schwinger boundary conditions in the case of one-dimensional quantum spin systems with finite-range potential”, Theoret. and Math. Phys., 13:1 (1972), 1024–1031
S.C Chay, “On quasi-Markov random fields”, Journal of Multivariate Analysis, 2:1 (1972), 14
Ю. М. Сухов, “Предельные матрицы плотности для одномерных непрерывных систем квантовой статистической механики”, Матем. сб., 83(125):4(12) (1970), 491–512; Yu. M. Sukhov, “Limit density matrices for one-dimensional continuous systems in quantum statistical mechanics”, Math. USSR-Sb., 12:4 (1970), 489–510
Ю. М. Сухов, “Применение матричного метода для непрерывных систем классической статистической механики”, УМН, 25:2(152) (1970), 277–278
Р. Л. Добрушин, “Гиббсовские случайные поля для частиц без твердой сердцевины”, ТМФ, 4:1 (1970), 101–118; R. L. Dobrushin, “Gibbsian random fields for particles without hard core”, Theoret. and Math. Phys., 4:1 (1970), 705–719
Р. Л. Добрушин, “Гиббсовские случайные поля для решетчатых систем с попарным взаимодействием”, Функц. анализ и его прил., 2:4 (1968), 31–43; R. L. Dobrushin, “Gibbsian random fields for lattice systems with pairwise interactions”, Funct. Anal. Appl., 2:4 (1968), 292–301