RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics

Izv. Saratov Univ. Math. Mech. Inform., 2009, Volume 9, Issue 3, Pages 37–46 (Mi isu58)

Structure of mixed problem solution for wave equation on compact geometrical graph in nonzero initial velocity case
O. V. Korovina, V. L. Pryadiev

This publication is cited in the following articles:
  1. Gaukhar Arepova, Ludmila Alexeyeva, Dana Arepova, “Solution to the Dirichlet Problem of the Wave Equation on a Star Graph”, Mathematics, 11:20 (2023), 4234  crossref
  2. M. Sh. Burlutskaya, A. V. Kiseleva, Ya. P. Korzhova, “Klassicheskoe reshenie smeshannoi zadachi dlya volnovogo uravneniya na grafe iz dvukh reber s tsiklom”, Materialy Voronezhskoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 5, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 194, VINITI RAN, M., 2021, 78–91  mathnet  crossref
  3. M. Sh. Burlutskaya, “Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications”, Russian Math. (Iz. VUZ), 65:5 (2021), 69–76  mathnet  mathnet  crossref  crossref  isi  scopus
  4. A. V. Tsvetkova, A. I. Shafarevich, “Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph with Initial Conditions on a Surface”, Math. Notes, 108:4 (2020), 590–602  mathnet  crossref  crossref  mathscinet  isi  elib
  5. A. V. Tsvetkova, A. I. Shafarevich, “The Cauchy Problem for the Wave Equation on Homogeneous Trees”, Math. Notes, 100:6 (2016), 862–869  mathnet  crossref  crossref  mathscinet  isi  elib


© Steklov Math. Inst. of RAS, 2025