RUS  ENG
Полная версия
ЖУРНАЛЫ // Moscow Mathematical Journal

Mosc. Math. J., 2013, том 13, номер 2, страницы 233–265 (Mi mmj496)

Pursuing the double affine Grassmannian III: convolution with affine zastava
Alexander Braverman, Michael Finkelberg

Эта публикация цитируется в следующих статьяx:
  1. Dinakar Muthiah, Alex Weekes, “Fundamental Monopole Operators and Embeddings of Kac-Moody Affine Grassmannian Slices”, International Mathematics Research Notices, 2024  crossref
  2. Ivan Mirković, Maxim Vybornov, Vasily Krylov, “Comparison of quiver varieties, loop Grassmannians and nilpotent cones in type A”, Advances in Mathematics, 407 (2022), 108397  crossref
  3. Braverman A., Finkelberg M., Nakajima H., “Coulomb Branches of 3D N=4 Quiver Gauge Theories and Slices in the Affine Grassmannian”, Adv. Theor. Math. Phys., 23:1 (2019), 75–166  crossref  mathscinet  isi  scopus
  4. H. Nakajima, Yu. Takayama, “Cherkis bow varieties and Coulomb branches of quiver gauge theories of affine type $A$”, Sel. Math.-New Ser., 23:4 (2017), 2553–2633  crossref  mathscinet  zmath  isi  scopus
  5. Yu. Takayama, “Nahm's equations, quiver varieties and parabolic sheaves”, Publ. Res. Inst. Math. Sci., 52:1 (2016), 1–41  crossref  mathscinet  zmath  isi  elib  scopus


© МИАН, 2025