RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki

Mat. Zametki, 1997, Volume 62, Issue 4, Pages 549–563 (Mi mzm1638)

Singularities of embedding operators between symmetric function spaces on $[0,1]$
S. Ya. Novikov

This publication is cited in the following articles:
  1. Rueda P., Sanchez Perez E.A., “the Support Localization Property of the Strongly Embedded Subspaces of Banach Function Spaces”, Stud. Sci. Math. Hung., 52:4 (2015), 559–576  crossref  mathscinet  zmath  isi  scopus  scopus
  2. Flores J., Hernandez F.L., Tradacete P., “Domination Problems for Strictly Singular Operators and Other Related Classes”, Positivity, 15:4, SI (2011), 595–616  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  3. Semenov E.M., “Finitely Strictly Singular Embeddings”, Dokl. Math., 81:3 (2010), 383–385  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  4. Hernandez, FL, “Strictly singular inclusions into L-1+L-infinity”, Mathematische Zeitschrift, 258:1 (2008), 87  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  5. Semenov, EM, “Strictly singular and disjointly strictly singular inclusions”, Doklady Mathematics, 75:2 (2007), 277  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  6. Hernandez, FL, “Strictly singular embeddings between rearrangement invariant spaces”, Positivity, 7:1–2 (2003), 119  crossref  mathscinet  zmath  isi  scopus  scopus
  7. S. Ya. Novikov, E. M. Semenov, F. L. Hernandez, “Strictly Singular Embeddings”, Funct. Anal. Appl., 36:1 (2002), 71–73  mathnet  crossref  crossref  mathscinet  zmath  isi
  8. Kaminska, A, “The Schur and (weak) Dunford-Pettis properties in Banach lattices”, Journal of the Australian Mathematical Society, 73 (2002), 251  crossref  mathscinet  zmath  isi
  9. Montgomery-Smith, SJ, “Embeddings of rearrangement invariant spaces that are not strictly singular”, Positivity, 4:4 (2000), 397  crossref  mathscinet  zmath  isi  scopus  scopus


© Steklov Math. Inst. of RAS, 2025