RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki

Mat. Zametki, 1974, Volume 16, Issue 6, Pages 943–950 (Mi mzm7536)

Structure of the closure of orbits in spaces of finite-dimensional linear $SL(2)$ representations
V. L. Popov

This publication is cited in the following articles:
  1. V. L. Popov, “Two Orbits: When Is One in the Closure of the Other?”, Proc. Steklov Inst. Math., 264 (2009), 146–158  mathnet  crossref  mathscinet  isi  elib  elib
  2. E. V. Sharoiko, “On the Finiteness of the Number of Orbits on Quasihomogeneous $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds”, Math. Notes, 81:5 (2007), 686–694  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  3. Franz Pauer, “Closures of SL(2)-orbits in projective spaces”, Manuscripta Math, 87:1 (1995), 295  crossref
  4. Dina Bartels, Lecture Notes in Mathematics, 1146, Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, 1985, 1  crossref
  5. V. L. Popov, “Syzygies in the theory of invariants”, Math. USSR-Izv., 22:3 (1984), 507–585  mathnet  crossref  mathscinet  zmath
  6. Dina Bartels, Lecture Notes in Mathematics, 924, Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, 1982, 384  crossref


© Steklov Math. Inst. of RAS, 2025