This publication is cited in the following articles:
Mauleshova G.S. Mironov A.E., “Positive One-Point Commuting Difference Operators”, Integrable Systems and Algebraic Geometry: a Celebration of Emma Previato'S 65Th Birthday, Vol 1, London Mathematical Society Lecture Note Series, 458, ed. Donagi R. Shaska T., Cambridge Univ Press, 2020, 395–412
O. K. Sheinman, “Krichever–Novikov Algebras, their Representations and Applications in Geometry and Mathematical Physics”, Proc. Steklov Inst. Math., 274, suppl. 1 (2011), S85–S161
Adler V.E., Suris Yu.B., “$\mathrm{Q}_4$: integrable master equation related to an elliptic curve”, Int. Math. Res. Not., 2004, no. 47, 2523–2553
I. M. Krichever, S. P. Novikov, “Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles”, Russian Math. Surveys, 58:3 (2003), 473–510
Dai H.H., Geng Xianguo, “Explicit solutions of the $2+1$-dimensional modified Toda lattice through straightening out of the relativistic Toda flows”, J. Phys. Soc. Japan, 72:12 (2003), 3063–3069
O. K. Sheinman, “The Fermion Model of Representations of Affine Krichever–Novikov Algebras”, Funct. Anal. Appl., 35:3 (2001), 209–219
I. M. Krichever, S. P. Novikov, “Holomorphic bundles and commuting difference operators. Two-point constructions”, Russian Math. Surveys, 55:3 (2000), 586–588
S. P. Novikov, “On the Equation [L, A] = ε·1”, Progress of Theoretical Physics Supplement, 102 (1990), 287