RUS  ENG
Full version
JOURNALS // Uspekhi Matematicheskikh Nauk

Uspekhi Mat. Nauk, 2000, Volume 55, Issue 1(331), Pages 187–188 (Mi rm258)

Holomorphic bundles and scalar difference operators: one-point constructions
I. M. Krichever, S. P. Novikov

This publication is cited in the following articles:
  1. Mauleshova G.S. Mironov A.E., “Positive One-Point Commuting Difference Operators”, Integrable Systems and Algebraic Geometry: a Celebration of Emma Previato'S 65Th Birthday, Vol 1, London Mathematical Society Lecture Note Series, 458, ed. Donagi R. Shaska T., Cambridge Univ Press, 2020, 395–412  isi
  2. O. K. Sheinman, “Krichever–Novikov Algebras, their Representations and Applications in Geometry and Mathematical Physics”, Proc. Steklov Inst. Math., 274, suppl. 1 (2011), S85–S161  mathnet  crossref  crossref  zmath
  3. Adler V.E., Suris Yu.B., “$\mathrm{Q}_4$: integrable master equation related to an elliptic curve”, Int. Math. Res. Not., 2004, no. 47, 2523–2553  crossref  mathscinet  zmath  isi  elib
  4. I. M. Krichever, S. P. Novikov, “Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles”, Russian Math. Surveys, 58:3 (2003), 473–510  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  5. Dai H.H., Geng Xianguo, “Explicit solutions of the $2+1$-dimensional modified Toda lattice through straightening out of the relativistic Toda flows”, J. Phys. Soc. Japan, 72:12 (2003), 3063–3069  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
  6. O. K. Sheinman, “The Fermion Model of Representations of Affine Krichever–Novikov Algebras”, Funct. Anal. Appl., 35:3 (2001), 209–219  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  7. I. M. Krichever, S. P. Novikov, “Holomorphic bundles and commuting difference operators. Two-point constructions”, Russian Math. Surveys, 55:3 (2000), 586–588  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
  8. S. P. Novikov, “On the Equation [L, A] = ε·1”, Progress of Theoretical Physics Supplement, 102 (1990), 287  crossref


© Steklov Math. Inst. of RAS, 2025