T. Tachim Medjo, “Asymptotic log-Harnack inequality for the 3D stochastic globally modified Allen-Cahn-Navier-Stokes system with degenerate noise”, Journal of Mathematical Analysis and Applications, 547:1 (2025), 129293
Muhammad Shoaib Arif, Wasfi Shatanawi, Yasir Nawaz, “Stochastic Analysis of electro-osmotic flow dynamics in porous media with energy dissipation”, International Journal of Thermofluids, 27 (2025), 101172
Muhammad Shoaib Arif, Kamaleldin Abodayeh, Yasir Nawaz, “A two-stage computational approach for stochastic Darcy-forchheimer non-newtonian flows”, Front. Phys., 13 (2025)
Yasir Nawaz, Muhammad Shoaib Arif, Amna Nazeer, Javeria Nawaz Abbasi, Kamaleldin Abodayeh, “A two‐stage reliable computational scheme for stochastic unsteady mixed convection flow of Casson nanofluid”, Numerical Methods in Fluids, 96:5 (2024), 719
Muhammad Shoaib Arif, Kamaleldin Abodayeh, Yasir Nawaz, “Numerical modeling of mixed convective nanofluid flow with fractal stochastic heat and mass transfer using finite differences”, Front. Energy Res., 12 (2024)
Carlos Parés-Pulido, “Finite volume methods for the computation of statistical solutions of the incompressible Euler equations”, IMA Journal of Numerical Analysis, 43:5 (2023), 3073
M. Sango, “Stochastic Navier–Stokes variational inequalities with unilateral boundary conditions: probabilistic weak solvability”, Ukr. Mat. Zhurn., 75:4 (2023), 523
Huaqiao Wang, “Large deviation principles of 2D stochastic Navier–Stokes equations with Lévy noises”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 153:1 (2023), 19
M. Sango, “Stochastic Navier–Stokes Variational Inequalities with Unilateral Boundary Conditions: Probabilistic Weak Solvability”, Ukr Math J, 75:4 (2023), 600
G. Deugoue, J. K. Djoko, A. C. Fouape, “GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS COUPLED WITH THE HEAT EQUATION: EXISTENCE RESULT AND TIME DISCRETE APPROXIMATION”, jaac, 11:5 (2021), 2423
D. Breit, T. C. Moyo, “Dissipative Solutions to the Stochastic Euler Equations”, J. Math. Fluid Mech., 23:3 (2021)
Ana Bela Cruzeiro, “Stochastic Approaches to Deterministic Fluid Dynamics: A Selective Review”, Water, 12:3 (2020), 864
Buckmaster T. Vicol V., “Convex Integration and Phenomenologies in Turbulence”, EMS Surv. Math. Sci., 6:1-2 (2019), 173–263
Susan Friedlander, Nathan Glatt-Holtz, Vlad Vicol, “Inviscid limits for a stochastically forced shell model of turbulent flow”, Ann. Inst. H. Poincaré Probab. Statist., 52:3 (2016)
Nathan Glatt-Holtz, Vladimír Šverák, Vlad Vicol, “On Inviscid Limits for the Stochastic Navier–Stokes Equations and Related Models”, Arch Rational Mech Anal, 217:2 (2015), 619
Д. А. Хрычёв, “О больших уклонениях ансамблей распределений”, Матем. сб., 204:11 (2013), 131–150; D. A. Khrychev, “On large deviations for ensembles of distributions”, Sb. Math., 204:11 (2013), 1671–1690
Arnaud Debussche, Lecture Notes in Mathematics, 2073, Topics in Mathematical Fluid Mechanics, 2013, 23
Igor Chueshov, Annie Millet, “Stochastic Two-Dimensional Hydrodynamical Systems: Wong-Zakai Approximation and Support Theorem”, Stochastic Analysis and Applications, 29:4 (2011), 570
Gabriel Deugoue, Mamadou Sango, “Weak solutions to stochastic 3D Navier–Stokes-α model of turbulence: α-Asymptotic behavior”, Journal of Mathematical Analysis and Applications, 384:1 (2011), 49
Richard A. Davis, Keh-Shin Lii, Dimitris N. Politis, Selected Works of Murray Rosenblatt, 2011, 377
Sango M., “Density Dependent Stochastic Navier–Stokes Equations With Non-Lipschitz Random Forcing”, Reviews in Mathematical Physics, 22:6 (2010), 669–697
Sango M., “Magnetohydrodynamic turbulent flows: Existence results”, Physica D-Nonlinear Phenomena, 239:12 (2010), 912–923
Igor Chueshov, Annie Millet, “Stochastic 2D Hydrodynamical Type Systems: Well Posedness and Large Deviations”, Appl Math Opt, 2009
Albeverio, S, “Some methods of infinite dimensional analysis in hydrodynamics: An introduction”, Spde in Hydrodynamic: Recent Progress and Prospects, 1942 (2008), 1
I CHUESHOV, S KUKSIN, “Stochastic 3D Navier–Stokes equations in a thin domain and its α -approximation”, Physica D: Nonlinear Phenomena, 237:10-12 (2008), 1352
Armen Shirikyan, “Qualitative properties of stationary measures for three-dimensional Navier–Stokes equations”, Journal of Functional Analysis, 249:2 (2007), 284
Sergey Lototsky, Boris Rozovskii, From Stochastic Calculus to Mathematical Finance, 2006, 433
R. Mikulevicius, B. L. Rozovskii, “Global L2-solutions of stochastic Navier–Stokes equations”, Ann. Probab., 33:1 (2005)
А. Р. Ширикян, “Аналитичность решений случайно возмущенных двумерных уравнений Навье–Стокса”, УМН, 57:4(346) (2002), 151–166; A. R. Shirikyan, “Analyticity of solutions for randomly forced two-dimensional Navier–Stokes equations”, Russian Math. Surveys, 57:4 (2002), 785–799
Björn Schmalfuss, “Qualitative properties for the stochastic Navier–Stokes equation”, Nonlinear Analysis: Theory, Methods & Applications, 28:9 (1997), 1545
В. И. Гишларкаев, “Существование статистических решений стохастической системы Кармана в ограниченной области”, Матем. заметки, 58:1 (1995), 22–37; V. I. Gishlarkaev, “Existence of statistical solutions of a stochastic Karman system in a bounded region”, Math. Notes, 58:1 (1995), 692–702
A. Ponosov, Advances in Analysis, Probability and Mathematical Physics, 1995, 200
L. Giraitis, S. A. Molchanov, D. Surgailis, The IMA Volumes in Mathematics and its Applications, 46, New Directions in Time Series Analysis, 1993, 153
Atsushi Inoue, Lecture Notes in Mathematics, 1530, The Navier-Stokes Equations II — Theory and Numerical Methods, 1992, 246
N. G. Dokuchaev, “Boundary Value Problems for Functionals of Ito^ Processes”, Theory Probab Appl, 36:3 (1991), 459
N. Elezović, A. Mikelić, “On the stochastic Cahn-Hilliard equation”, Nonlinear Analysis: Theory, Methods & Applications, 16:12 (1991), 1169
Dongho Chae, “The vanishing viscosity limit of statistical solutions of the Navier–Stokes equations. I. 2-D periodic case”, Journal of Mathematical Analysis and Applications, 155:2 (1991), 437
Dongho Chae, “The vanishing viscosity limit of statistical solutions of the Navier–Stokes equations. II. The general case”, Journal of Mathematical Analysis and Applications, 155:2 (1991), 460
W. Kollmann, “The pdf approach to turbulent flow”, Theoret Comput Fluid Dynamics, 1:5 (1990), 249
Sergio Albeverio, Ana-Bela Cruzeiro, “Global flows with invariant (Gibbs) measures for Euler and Navier–Stokes two dimensional fluids”, Comm Math Phys, 129:3 (1990), 431
Atsushi Inoue, “On Hopf type functional derivative equations for □u + cu + bu2 + au3 = 0 on . I. Existence of solutions”, Journal of Mathematical Analysis and Applications, 152:1 (1990), 61
Ana Bela Cruzeiro, Lecture Notes in Physics, 355, Dynamics and Stochastic Processes Theory and Applications, 1990, 107
Andro MikeliĆ, “Mathematical Problems of Statistical Hydromechanics (M. J. Vishik and A. V. Fursikov)”, SIAM Rev, 31:4 (1989), 704
Bjoern Schmalfuss, Lecture Notes in Control and Information Sciences, 96, Stochastic Differential Systems, 1987, 109
M. Rosenblatt, “Scale renormalization and random solutions of the Burgers equation”, Journal of Applied Probability, 24:2 (1987), 328
Atsushi Inoue, “Strong and classical solutions of the Hopf equation—an example of functional derivative equation of second order”, Tohoku Math. J. (2), 39:1 (1987)
Pure and Applied Mathematics, 122, 1986, 107
И. В. Скрыпник, “Усреденение квазилинейных эллиптических задач
в перфорированных областях”, УМН, 40:4(244) (1985), 197–198; I. V. Skrypnik, “Averaging of quasilinear elliptic problems in perforated domains”, Russian Math. Surveys, 40:4 (1985), 217–218
И. Д. Чуешов, “Существование статистических решений стохастической системы уравнений Кармана в ограниченной области”, Матем. сб., 122(164):3(11) (1983), 291–312; I. D. Chueshov, “The existence of statistical solutions of the stochastic system of von Kármán equations in a bounded domain”, Math. USSR-Sb., 50:2 (1985), 279–298
Д. А. Хрычёв, “Об одном стохастическом квазилинейном гиперболическом уравнении”, Матем. сб., 116(158):3(11) (1981), 398–426; D. A. Khrychev, “On a certain stochastic quasilinear hyperbolic equation”, Math. USSR-Sb., 44:3 (1983), 363–388
Т. В. Гиря, “Стабилизация статистических решений нелинейного параболического
уравнения с белым шумом”, УМН, 36:2(218) (1981), 177–178; T. V. Girya, “Stabilization of statistical solutions of a non-linear parabolic equation with white noise”, Russian Math. Surveys, 36:2 (1981), 171–172
М. И. Вишик, А. И. Комеч, “Слабые решения обратного уравнения Колмогорова, соответствующего стохастической системе Навье–Стокса”, УМН, 36:3(219) (1981), 205–206; M. I. Vishik, A. I. Komech, “Weak solutions of the inverse Kolmogorov equation corresponding to the stochastic Navier–Stokes system”, Russian Math. Surveys, 36:3 (1981), 268–269
Д. А. Хрычёв, “О разрешимости одного нелинейного гиперболического
уравнения с белым шумом”, УМН, 36:3(219) (1981), 231–232; D. A. Khrychev, “On the solubility of a non-linear hyperbolic equation with white noise”, Russian Math. Surveys, 36:3 (1981), 254–255