RUS  ENG
Full version
JOURNALS // Uspekhi Matematicheskikh Nauk

Uspekhi Mat. Nauk, 2013, Volume 68, Issue 6(414), Pages 175–176 (Mi rm9560)

Generalization of Doob's optional sampling theorem for deformed submartingales
I. V. Pavlov, O. V. Nazarko

This publication is cited in the following articles:
  1. Pavlov I., “Some Processes and Models on Deformed Stochastic Bases”, 2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (Smrlo), ed. Frenkel I. Lisnianski A., IEEE, 2016, 432–437  crossref  isi  scopus
  2. I. V. Pavlov, O. V. Nazarko, “On non-negative adapted random variable sequences that are density processes for deformed stochastic bases of the first kind”, Russian Math. Surveys, 70:1 (2015), 174–175  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  3. Pavlov I.V., Nazarko O.V., “Teoremy o deformirovannykh martingalakh: razlozhenie Rissa, kharakterizatsiya lokalnykh martingalov, vychislenie kvadratichnykh kharak”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriya: Estestvennye nauki, 2015, 36–42  elib
  4. I. V. Pavlov, O. V. Nazarko, “Characterization of density processes of deformed stochastic bases of the first kind”, Proc. Steklov Inst. Math., 287:1 (2014), 256–267  mathnet  crossref  crossref  isi  elib  elib


© Steklov Math. Inst. of RAS, 2025