RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications

SIGMA, 2017, том 13, 026, 18 стр. (Mi sigma1226)

Another Approach to Juhl's Conformally Covariant Differential Operators from $S^n$ to $S^{n-1}$
Jean-Louis Clerc

Эта публикация цитируется в следующих статьяx:
  1. A. Rod Gover, L. J. Peterson, “Conformal boundary operators, $T$-curvatures, and conformal fractional Laplacians of odd order”, Pac. J. Math., 311:2 (2021), 277–328  crossref  mathscinet  isi
  2. J.-L. Clerc, “Symmetry breaking differential operators, the source operator and rodrigues formulae”, Pac. J. Math., 307:1 (2020), 79–107  crossref  mathscinet  zmath  isi  scopus
  3. A. Juhl, B. Orsted, “Shift operators, residue families and degenerate Laplacians”, Pac. J. Math., 308:1 (2020), 103–160  crossref  mathscinet  zmath  isi
  4. M. Fischmann, A. Juhl, P. Somberg, “Introduction”, Mem. Am. Math. Soc., 268:1304 (2020), 1+  mathscinet  isi
  5. Kobayashi T., Pevzner M., “Inversion of Rankin-Cohen Operators Via Holographic Transform”, Ann. Inst. Fourier, 70:5 (2020), 2131–2190  crossref  mathscinet  isi
  6. Salem Ben Saïd, Jean-Louis Clerc, Khalid Koufany, “Conformally Covariant Bi-differential Operators for Differential Forms”, Commun. Math. Phys., 373:2 (2020), 739  crossref
  7. J.-L. Clerc, “Conformally covariant differential operators for the diagonal action of $O(p,q)$ on real quadrics”, J. Geom. Anal., 28:4 (2018), 3300–3311  crossref  mathscinet  zmath  isi  scopus


© МИАН, 2025