RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal

Sibirsk. Mat. Zh., 2002, Volume 43, Number 1, Pages 228–239 (Mi smj1281)

On harmonic continuation of differentiable functions defined on a part of the boundary
Sh. Yarmukhamedov

This publication is cited in the following articles:
  1. Dilshod S. Shodiev, “On the Cauchy problem for the biharmonic equation”, Zhurn. SFU. Ser. Matem. i fiz., 15:2 (2022), 201–215  mathnet  crossref
  2. A. B. Khasanov, F. R. Tursunov, “On the Cauchy problem for the three-dimensional Laplace equation”, Russian Math. (Iz. VUZ), 65:2 (2021), 49–64  mathnet  crossref  crossref  isi
  3. A. B. Khasanov, F. R. Tursunov, “On Cauchy problem for Laplace equation”, Ufa Math. J., 11:4 (2019), 91–107  mathnet  crossref  isi
  4. E. N. Sattorov, “The Cauchy problem for a generalized spatial Cauchy–Riemann system”, Russian Math. (Iz. VUZ), 54:5 (2010), 27–34  mathnet  crossref  mathscinet  elib
  5. Ehrnstrom M., “A new formulation of the water wave problem for Stokes waves of constant vorticity”, Journal of Mathematical Analysis and Applications, 339:1 (2008), 636–643  crossref  mathscinet  zmath  adsnasa  isi  scopus
  6. W. J. Blok, Eva Hoogland, “The Beth Property in Algebraic Logic”, Stud Logica, 83:1-3 (2006), 49  crossref
  7. Yarmukhamedov S., Yarmukhamedov I., “Cauchy problem for the Helmholtz equation”, Ill-Posed and Non-Classical Problems of Mathematical Physics and Analysis, Proceedings, Inverse and Ill-Posed Problems Series, 2003, 143–172  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025