RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal

Sibirsk. Mat. Zh., 2000, Volume 41, Number 1, Pages 118–133 (Mi smj1502)

On a generalization of the Darboux theorem to the multidimensional case
M. V. Korobkov

This publication is cited in the following articles:
  1. M. V. Korobkov, “Properties of $C^1$-smooth mappings with one-dimensional gradient range”, Siberian Math. J., 50:5 (2009), 874–886  mathnet  crossref  mathscinet  isi  elib  elib
  2. M. V. Korobkov, E. Yu. Panov, “Necessary and sufficient conditions for a curve to be the gradient range of a $C^1$-smooth function”, Siberian Math. J., 48:4 (2007), 629–647  mathnet  crossref  mathscinet  zmath  isi  elib  elib
  3. M. V. Korobkov, E. Yu. Panov, “Isentropic solutions of quasilinear equations of the first order”, Sb. Math., 197:5 (2006), 727–752  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  4. Korobkov M.V., Panov E.Yu., “Necessary and sufficient conditions for a curve to be an image of the gradient of a C–1 function”, Doklady Mathematics, 74:2 (2006), 696–699  crossref  mathscinet  zmath  isi  elib  scopus
  5. Korobkov M., “On stability of a class of convex functions”, Progress in Analysis, 2003, 207–213  crossref  mathscinet  isi
  6. Korobkov M.V., “To extension of the Lagrange and Darboux theorems over vector-valued functions”, Doklady Mathematics, 63:2 (2001), 227–229  zmath  isi
  7. Korobkov M.V., Egorov A.A., “Stability of classes of Lipschitzian mappings, the Darboux theorem, and quasiconvex sets”, Doklady Mathematics, 62:1 (2000), 84–88  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025