RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal

Sibirsk. Mat. Zh., 1993, Volume 34, Number 4, Pages 153–159 (Mi smj1639)

Infinite generation of automorphism groups of free pro-$p$ groups
V. A. Roman'kov

This publication is cited in the following articles:
  1. Dessislava Kochloukova, Stefano Vidussi, Contemporary Mathematics, 816, Geometry and Topology of Aspherical Manifolds, 2025, 45  crossref
  2. V. A. Roman'kov, “Algorithmic theory of solvable groups”, PDM, 2021, no. 52, 16–64  mathnet  crossref  elib
  3. Wolfgang Herfort, Pavel Zalesskii, “Virtually free pro-p groups”, Publ.math.IHES, 118:1 (2013), 193  crossref
  4. Bux K.-U., Ershov M.V., Rapinchuk A.S., “The congruence subgroup property for Aut F-2: A group-theoretic proof of Asada's theorem”, Groups Geom Dyn, 5:2 (2011), 327–353  crossref  mathscinet  zmath  isi
  5. Porto A.L.P., Zalesskii P.A., “Free-by-finite pro-p groups and integral p-adic representations”, Arch Math (Basel), 97:3 (2011), 225–235  crossref  mathscinet  zmath  isi
  6. Kofinas C.E., Papistas A.I., “Automorphisms of Relatively Free Nilpotent Lie Algebras”, Comm Algebra, 38:4 (2010), 1575–1593  crossref  mathscinet  zmath  isi
  7. Papistas A.I., “Automorphisms of certain relatively free groups and Lie algebras”, International Journal of Algebra and Computation, 14:3 (2004), 311–323  crossref  mathscinet  zmath  isi
  8. Herfort W., Zalesskii P.A., “Cyclic extensions of free pro–p groups”, Journal of Algebra, 216:2 (1999), 511–547  crossref  mathscinet  zmath  isi
  9. Herfort W.N., Ribes L., Zalesskii P.A., “Finite extensions of free pro–P groups of rank at most two”, Israel Journal of Mathematics, 107 (1998), 195–227  crossref  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025