This publication is cited in the following articles:
G. Heckman, “Exercises on the Kepler ellipses through a fixed point in space, after Otto Laporte”, Indagationes Mathematicae, 2025
E. S. Agureeva, V. A. Kibkalo, “Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra $e(2,1)$”, Moscow University Mathematics Bulletin, 79:5 (2024), 207–222
V. A. Kibkalo, “Pervyi klass Appelrota psevdoevklidovoi sistemy Kovalevskoi”, Chebyshevskii sb., 24:1 (2023), 69–88
Velimir Jurdjevic, “Integrable Systems: In the Footprints of the Greats”, Mathematics, 11:4 (2023), 1063
Jurdjevic V., “Kowalewski TOP and Complex Lie Algebras”, Anal. Math. Phys., 11:4 (2021), 173
Kibkalo V., “Topological Classification of Liouville Foliations For the Kovalevskaya Integrable Case on the Lie Algebra So(3,1)”, Topology Appl., 275 (2020), 107028
V. A. Kibkalo, “Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras”, Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 75:6 (2020), 263–267
V. A. Kibkalo, “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$”, Sb. Math., 210:5 (2019), 625–662
Borisov A. Mamaev I., “Rigid Body Dynamics”, Rigid Body Dynamics, de Gruyter Studies in Mathematical Physics, 52, Walter de Gruyter Gmbh, 2019, 1–520
V. Kibkalo, “Topological Analysis of the Liouville Foliation for the Kovalevskaya Integrable Case on the Lie Algebra so(4)”, Lobachevskii J Math, 39:9 (2018), 1396
Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65
V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral”, Moscow University Mathematics Bulletin, 71:3 (2016), 119–123
Vladimir Dragović, Borislav Gajić, “Some Recent Generalizations of the Classical Rigid Body Systems”, Arnold Math J., 2:4 (2016), 511
P. E. Ryabov, A. Yu. Savushkin, “Fazovaya topologiya volchka Kovalevskoi – Sokolova”, Nelineinaya dinam., 11:2 (2015), 287–317
Vladimir Dragović, Katarina Kukić, Springer Proceedings in Physics, 163, Nonlinear Mathematical Physics and Natural Hazards, 2015, 49
I. K. Kozlov, “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 205:4 (2014), 532–572
Proc. Steklov Inst. Math., 286 (2014), 224–239
A. V. Vershilov, Yu. A. Grigorev, A. V. Tsyganov, “Ob odnoi integriruemoi deformatsii volchka Kovalevskoi”, Nelineinaya dinam., 10:2 (2014), 223–236
Dragovic V., Kukic K., “Role of Discriminantly Separable Polynomials in Integrable Dynamical Systems”, Tim 2013 Physics Conference, AIP Conference Proceedings, 1634, eds. Bunoiu O., Avram N., Popescu A., Amer Inst Physics, 2014, 3–8
Vladimir Dragović, Katarina Kukić, “Systems of Kowalevski Type and Discriminantly Separable Polynomials”, Regul. Chaotic Dyn., 19:2 (2014), 162–184
Valery V. Kozlov, “Remarks on Integrable Systems”, Regul. Chaotic Dyn., 19:2 (2014), 145–161
V. E. Adler, V. G. Marikhin, A. B. Shabat, “Quantum tops as examples of commuting differential operators”, Theoret. and Math. Phys., 172:3 (2012), 1187–1205
Wolf, T, “Classification of integrable quadratic Hamiltonians on e(3)”, Regular & Chaotic Dynamics, 8:2 (2003), 155
Komarov, IV, “Poisson maps and integrable deformations of the Kowalevski top”, Journal of Physics A-Mathematical and General, 36:29 (2003), 8035
Vadim B Kuznetsov, “Simultaneous separation for the Kowalevski and Goryachev$ndash$Chaplygin gyrostats”, J. Phys. A: Math. Gen., 35:30 (2002), 6419
I V Komarov, “Remarks on Kowalevski's top”, J. Phys. A: Math. Gen., 34:11 (2001), 2111
I. V. Komarov, V. B. Kuznetsov, “Semiclassical quantization of Kowalewski top”, Theoret. and Math. Phys., 73:3 (1987), 1255–1263
I.V. Komarov, “A generalization of the Kovalevskaya top”, Physics Letters A, 123:1 (1987), 14
I. V. Komarov, “Goryachev–Chaplygin top in quantum mechanics”, Theoret. and Math. Phys., 50:3 (1982), 265–270