RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika

TMF, 1988, Volume 75, Number 2, Pages 201–211 (Mi tmf4773)

Quantization of non-Abelian antisymmetric tensor field
A. A. Slavnov, S. A. Frolov

This publication is cited in the following articles:
  1. Sergei M. Kuzenko, Emmanouil S. N. Raptakis, “Covariant quantisation of tensor multiplet models”, J. High Energ. Phys., 2024:9 (2024)  crossref
  2. P. M. Lavrov, Ilya Shapiro, Handbook of Quantum Gravity, 2024, 389  crossref
  3. P. M. Lavrov, I. L. Shapiro, Handbook of Quantum Gravity, 2023, 1  crossref
  4. Buchbinder I.L. Ivanov E.A. Pletnev N.G., “Superfield approach to the construction of effective action in quantum field theory with extended supersymmetry”, Phys. Part. Nuclei, 47:3 (2016), 291–369  crossref  isi  elib  scopus
  5. Pavel Yu. Moshin, Alexander A. Reshetnyak, “Finite BRST–antiBRST transformations in Lagrangian formalism”, Physics Letters B, 739 (2014), 110  crossref
  6. Ignatios Antoniadis, George Savvidy, “New gauge anomalies and topological invariants in various dimensions”, Eur. Phys. J. C, 72:9 (2012)  crossref
  7. Proc. Steklov Inst. Math., 272 (2011), 201–215  mathnet  crossref  mathscinet  zmath  isi  elib  elib
  8. M. V. Chizhov, “Theory and phenomenology of spin-1 chiral particles”, Phys. Part. Nuclei, 42:1 (2011), 93  crossref
  9. Peter M. Lavrov, “Sp(2) renormalization”, Nuclear Physics B, 849:2 (2011), 503  crossref
  10. Lavrov P.M., Shapiro I.L., “Renormalization of gauge theories in curved space-time”, Physical Review D, 81:4 (2010), 044026  crossref  isi
  11. Savvidy G., “Topological mass generation four-dimensional gauge theory”, Phys Lett B, 694:1 (2010), 65–73  crossref  isi
  12. I. L. Buchbinder, N. G. Pletnev, “One-loop effective action in the $\mathcal N=2$ supersymmetric massive Yang–Mills field theory”, Theoret. and Math. Phys., 157:1 (2008), 1383–1398  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
  13. Bogusław Broda, Piotr Bronowski, Marcin Ostrowski, Michał Szanecki, “Quantization of four-dimensional Abelian gravity”, Physics Letters B, 655:3-4 (2007), 178  crossref
  14. Geyer, B, “Gauge models in modified triplectic quantization”, International Journal of Modern Physics A, 16:26 (2001), 4297  crossref  isi
  15. P.M. Lavrov, P.Yu. Moshin, “Physical unitarity in the Lagrangian Sp(2)-symmetric formalism”, Nuclear Physics B, 486:3 (1997), 565  crossref
  16. Joaquim Gomis, Jordi París, Stuart Samuel, “Antibracket, antifields and gauge-theory quantization”, Physics Reports, 259:1-2 (1995), 1  crossref
  17. S. A. Frolov, “BRST quantization of gauge theories in Hamiltonian-like gauges”, Theoret. and Math. Phys., 87:2 (1991), 464–477  mathnet  crossref  mathscinet  zmath  isi
  18. M. Baker, James S. Ball, F. Zachariasen, “Unitarity in dual QCD”, Phys. Rev. D, 44:8 (1991), 2578  crossref
  19. A. A. Slavnov, S. A. Frolov, “Lagrangian BRST quantization and unitarity”, Theoret. and Math. Phys., 85:3 (1990), 1237–1255  mathnet  crossref  mathscinet  isi
  20. N.K. Nielsen, “Quantum equivalence of four-dimensional nonlinear σ-model and antisymmetric tensor model”, Nuclear Physics B, 332:2 (1990), 391  crossref
  21. S.A. Frolov, A.A. Slavnov, “Construction of the effective action for general gauge theories via unitarity”, Nuclear Physics B, 347:1-2 (1990), 333  crossref
  22. Andrey Slavnov, “BRST-quantization and unitarity”, Nuclear Physics B - Proceedings Supplements, 15 (1990), 107  crossref
  23. A. A. Slavnov, “Unitarity condition in covariant quantum field theory with indefinite metric”, Theoret. and Math. Phys., 79:3 (1989), 579–587  mathnet  crossref  mathscinet  isi
  24. P. M. Lavrov, I. V. Tyutin, “Symmetry generators in singular theories”, Theoret. and Math. Phys., 79:3 (1989), 587–595  mathnet  crossref  mathscinet  isi


© Steklov Math. Inst. of RAS, 2025