RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika

TMF, 1984, Volume 60, Number 1, Pages 9–23 (Mi tmf5098)

Classification of exactly integrable embeddings of two-dimensional manifolds. The coefficients of the third fundamental forms
M. V. Saveliev

This publication is cited in the following articles:
  1. Derezin S., “Gauss–Codazzi Equations for Thin Films and Nanotubes Containing Defects”, Shell-Like Structures: Non-Classical Theories and Applications, Advanced Structured Materials, 15, ed. Altenbach H. Eremeyev V., Springer-Verlag Berlin, 2011, 531–548  crossref  isi
  2. Svyatoslav Derezin, Advanced Structured Materials, 15, Shell-like Structures, 2011, 531  crossref
  3. O. I. Mokhov, “Realization of Frobenius Manifolds as Submanifolds in Pseudo-Euclidean Spaces”, Proc. Steklov Inst. Math., 267 (2009), 217–234  mathnet  crossref  mathscinet  zmath  isi  elib
  4. F. E. Burstall, F. Pedit, Aspects of Mathematics, E 23, Harmonic Maps and Integrable Systems, 1994, 221  crossref
  5. Ioannis Bakas, “W∞ symmetry of the Nambu-Goto string in 4 dimensions”, Physics Letters B, 319:4 (1993), 457  crossref
  6. A. I. Bobenko, “Integrable surfaces”, Funct. Anal. Appl., 24:3 (1990), 227–228  mathnet  crossref  mathscinet  zmath  isi
  7. M. V. Saveliev, “Multidimensional nonlinear systems”, Theoret. and Math. Phys., 69:3 (1986), 1234–1240  mathnet  crossref  mathscinet  zmath  isi
  8. E. A. Ivanov, S. O. Krivonos, “$N=4$ superextension of the Liouville equation with quaternion structure”, Theoret. and Math. Phys., 63:2 (1985), 477–486  mathnet  crossref  mathscinet  isi


© Steklov Math. Inst. of RAS, 2025