RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika

TMF, 1984, Volume 60, Number 2, Pages 262–269 (Mi tmf5282)

Correlation functions of one-dimensional Bose gas in thermodynamic equilibrium
N. M. Bogolyubov, V. E. Korepin

This publication is cited in the following articles:
  1. Andreas Klümper, Ovidiu I. Pâţu, “Temperature-driven crossover in the Lieb-Liniger model”, Phys. Rev. A, 90:5 (2014)  crossref
  2. N. A. Slavnov, “Asymptotic expansions for correlation functions of one-dimensional bosons”, Theoret. and Math. Phys., 174:1 (2013), 109–121  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  3. Patu O.I., Kluemper A., “Correlation Lengths of the Repulsive One-Dimensional Bose Gas”, Phys. Rev. A, 88:3 (2013), 033623  crossref  isi
  4. Márton Kormos, Aditya Shashi, Yang-Zhi Chou, Jean-Sébastien Caux, Adilet Imambekov, “Interaction quenches in the one-dimensional Bose gas”, Phys. Rev. B, 88:20 (2013)  crossref
  5. Kozlowski K.K., Maillet J.M., Slavnov N.A., “Long-Distance Behavior of Temperature Correlation Functions in the One-Dimensional Bose Gas”, J. Stat. Mech.-Theory Exp., 2011, P03018  crossref  isi
  6. Helen Au-Yang, Jacques H.H. Perk, “Critical correlations in a Z-invariant inhomogeneous ising model”, Physica A: Statistical Mechanics and its Applications, 144:1 (1987), 44  crossref
  7. N. M. Bogolyubov, “Thermodynamics of a one-dimensional lattice Bose gas”, Theoret. and Math. Phys., 67:3 (1986), 614–622  mathnet  crossref  mathscinet  isi
  8. V. E. Korepin, N. A. Slavnov, “Correlation function of currents in a one-dimensional Bose gas”, Theoret. and Math. Phys., 68:3 (1986), 955–960  mathnet  crossref  mathscinet  isi
  9. N. M. Bogolyubov, V. E. Korepin, “Temperature dependence of the correlation length in a one-dimensional Bose gas”, Theoret. and Math. Phys., 64:1 (1985), 708–715  mathnet  crossref  mathscinet  isi


© Steklov Math. Inst. of RAS, 2025