RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika

TMF, 1990, Volume 84, Number 1, Pages 38–45 (Mi tmf5859)

Elliptic solutions of nonlinear equations
I. A. Taimanov

This publication is cited in the following articles:
  1. B. T. Saparbaeva, “Two-Dimensional Finite-Gap Schrödinger Operators with Elliptic Coefficients”, Math. Notes, 747–749  mathnet  crossref  crossref  mathscinet  elib
  2. Fritz Gesztesy, Karl Unterkofler, Rudi Weikard, “An explicit characterization of Calogero–Moser systems”, Trans. Amer. Math. Soc., 358:2 (2005), 603  crossref
  3. Gesztesy, F, “Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies - An analytic approach”, Bulletin of the American Mathematical Society, 35:4 (1998), 271  crossref  mathscinet  zmath  isi
  4. Fritz Gesztesy, Rudi Weikard, “A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy”, Acta Math., 181:1 (1998), 63  crossref
  5. A. O. Smirnov, “Elliptic in $t$ solutions of the nonlinear Schrödinger equation”, Theoret. and Math. Phys., 107:2 (1996), 568–578  mathnet  crossref  crossref  mathscinet  zmath  isi
  6. Fritz Gesztesy, Rudi Weikard, “Picard potentials and Hill's equation on a torus”, Acta Math., 176:1 (1996), 73  crossref
  7. A. O. Smirnov, “Two-gap elliptic solutions to integrable nonlinear equations”, Math. Notes, 58:1 (1995), 735–743  mathnet  crossref  mathscinet  zmath  isi
  8. F. Gesztesy, R. Weikard, “Treibich-Verdier potentials and the stationary (m)KDV hierarchy”, Math Z, 219:1 (1995), 451  crossref
  9. A. O. Smirnov, “Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg–de Vries equation”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 461–470  mathnet  crossref  mathscinet  zmath  isi
  10. A. O. Smirnov, “Solutions of the KdV equation elliptic in $t$”, Theoret. and Math. Phys., 100:2 (1994), 937–947  mathnet  crossref  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025