RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika

TMF, 2008, Volume 157, Number 3, Pages 364–372 (Mi tmf6285)

Zeta-nonlocal scalar fields
B. G. Dragovich

This publication is cited in the following articles:
  1. Viorel Catană, Horia-George Georgescu, Ioana-Maria Flondor, “On a Generalized Class of Nonlinear Equations Defined by Elliptic Symbols”, Bull. Malays. Math. Sci. Soc., 47:4 (2024)  crossref
  2. A. Chávez, M. Ortiz, H. Prado, E.G. Reyes, “Linear equations with infinitely many derivatives and explicit solutions to zeta nonlocal equations”, Nuclear Physics B, 1007 (2024), 116680  crossref
  3. Romildo N. de Lima, César E. T. Ledesma, Alânnio B. Nóbrega, Humberto Prado, “On dual cone theory for Euclidean Bosonic equations”, J. Fixed Point Theory Appl., 26:4 (2024)  crossref
  4. Michele Nardelli, “On Some Mathematical Connections between the Cyclic Universe, Inflationary Universe, p-Adic Inflation, p-Adic Cosmology and Various Sectors of Number Theory”, JMP, 15:11 (2024), 1869  crossref
  5. Chavez A., Prado H., Reyes E.G., “The Laplace Transform and Nonlocal Field Equations”, AIP Conference Proceedings, 2075, eds. Mishonov T., Varonov A., Amer Inst Physics, 2019, 090027-1  crossref  isi
  6. Chavez A., Prado H., Reyes E.G., “A Laplace Transform Approach to Linear Equations With Infinitely Many Derivatives and Zeta-Nonlocal Field Equations”, Adv. Theor. Math. Phys., 23:7 (2019), 1771–1804  crossref  mathscinet  isi  scopus
  7. Dragovich B. Khrennikov A.Yu. Kozyrev S.V. Volovich I.V. Zelenov E.I., “P-Adic Mathematical Physics: the First 30 Years”, P-Adic Numbers Ultrametric Anal. Appl., 9:2 (2017), 87–121  crossref  mathscinet  zmath  isi  scopus
  8. Aref'eva I.Ya. Djordjevic G.S. Khrennikov A.Yu. Kozyrev S.V. Rakic Z. Volovich I.V., “P-Adic Mathematical Physics and B. Dragovich Research”, P-Adic Numbers Ultrametric Anal. Appl., 9:1 (2017), 82–85  crossref  mathscinet  zmath  isi  scopus
  9. Prado H., Reyes E.G., “On Equations With Infinitely Many Derivatives: Integral Transforms and the Cauchy Problem”, 2nd International Conference on Mathematical Modeling in Physical Sciences 2013, Journal of Physics Conference Series, 490, eds. Vagenas E., Vlachos D., IOP Publishing Ltd, 2014, 012044  crossref  isi  scopus
  10. Mauricio Bravo Vera, “Nonlinear Equations of Infinite Order Defined by an Elliptic Symbol”, International Journal of Mathematics and Mathematical Sciences, 2014 (2014), 1  crossref
  11. Koshelev A.S., “Stable Analytic Bounce in Non-Local Einstein-Gauss-Bonnet Cosmology”, Class. Quantum Gravity, 30:15 (2013), 155001  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  12. Gorka P., Prado H., Reyes E.G., “On a General Class of Nonlocal Equations”, Ann. Henri Poincare, 14:4 (2013), 947–966  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  13. Gorka P., Prado H., Reyes E.G., “The initial value problem for ordinary differential equations with infinitely many derivatives”, Classical Quantum Gravity, 29:6 (2012), 065017  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  14. Biswas T., Koshelev A.S., Mazumdar A., Vernov S.Yu., “Stable Bounce and Inflation in Non-Local Higher Derivative Cosmology”, J. Cosmol. Astropart. Phys., 2012, no. 8, 024  crossref  mathscinet  isi  elib  scopus
  15. Biswas T., Kapusta J.I., Reddy A., “Thermodynamics of String Field Theory Motivated Nonlocal Models”, J. High Energy Phys., 2012, no. 12, 008  crossref  mathscinet  isi  scopus
  16. Górka P., Prado H., Reyes E.G., “Nonlinear Equations with Infinitely many Derivatives”, Complex Anal. Oper. Theory, 5:1 (2011), 313–323  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  17. Vernov S.Yu., “Localization of nonlocal cosmological models with quadratic potentials in the case of double roots”, Class. Quantum Grav., 27:3 (2010), 035006, 16 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  18. B. G. Dragovich, “The $p$-adic sector of the adelic string”, Theoret. and Math. Phys., 163:3 (2010), 768–773  mathnet  crossref  crossref  mathscinet  adsnasa  isi
  19. B. G. Dragovich, “Nonlocal dynamics of $p$-adic strings”, Theoret. and Math. Phys., 164:3 (2010), 1151–1155  mathnet  crossref  crossref  adsnasa  isi
  20. Biswas T., Cembranos J.A.R., Kapusta J.I., “Thermodynamics and cosmological constant of non-local field theories from p-adic strings”, Journal of High Energy Physics, 2010, no. 10, 048  crossref  mathscinet  isi  scopus
  21. Biswas T., Koivisto T., Mazumdar A., “Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity”, J. Cosmol. Astropart. Phys., 2010, no. 11, 008  crossref  isi  scopus
  22. Dragovich B., “On p-Adic Sector of Open Scalar Strings and Zeta Field Theory”, Lie Theory and its Applications in Physics, AIP Conference Proceedings, 1243, 2010, 43–50  crossref  adsnasa  isi  scopus
  23. Dragovich B., “Towards effective Lagrangians for adelic strings”, Fortschr. Phys., 57:5-7 (2009), 546–551  crossref  mathscinet  zmath  isi  elib  scopus
  24. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, “On p-adic mathematical physics”, P-Adic Num Ultrametr Anal Appl, 1:1 (2009), 1  crossref
  25. Dragovich B., “Lagrangians with Riemann zeta function”, Romanian J. Phys., 53:9-10 (2008), 1105–1110  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025