RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Московского университета. Серия 1: Математика. Механика

Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1996, номер 4, страницы 57–69 (Mi vmumm2036)

Введение в задачу о торможении тела в сопротивляющейся среде и новое двухпараметрическое семейство фазовых портретов
М. В. Шамолин

Эта публикация цитируется в следующих статьяx:
  1. М. В. Шамолин, “Интегрируемые динамические системы нечетного порядка с диссипацией разного знака”, Тр. сем. им. И. Г. Петровского, 33, Издательство Московского университета, М., 2023, 424–464  mathnet
  2. М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении трехмерного многообразия”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 205, ВИНИТИ РАН, М., 2022, 22–54  mathnet  crossref
  3. М. В. Шамолин, “Системы с четырьмя степенями свободы с диссипацией: анализ и интегрируемость”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 205, ВИНИТИ РАН, М., 2022, 55–94  mathnet  crossref
  4. М. В. Шамолин, “Системы с пятью степенями свободы с диссипацией: анализ и интегрируемость. I. Порождающая задача из динамики многомерного твердого тела, помещенного в неконсервативное поле сил”, Материалы Воронежской международной весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXXII», Воронеж, 3–9 мая 2021 г.  Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 208, ВИНИТИ РАН, М., 2022, 91–121  mathnet  crossref
  5. М. В. Шамолин, “Системы с пятью степенями свободы с диссипацией: анализ и интегрируемость. II. Динамические системы на касательных расслоениях”, Материалы Воронежской международной весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXXII», Воронеж, 3–9 мая 2021 г.  Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 209, ВИНИТИ РАН, М., 2022, 88–107  mathnet  crossref
  6. М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении четырехмерного многообразия. I. Уравнения геодезических”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 210, ВИНИТИ РАН, М., 2022, 77–95  mathnet  crossref
  7. М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении четырехмерного многообразия. II. Потенциальные силовые поля”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 211, ВИНИТИ РАН, М., 2022, 29–40  mathnet  crossref
  8. М. В. Шамолин, “Системы с конечным числом степеней свободы с диссипацией: анализ и интегрируемость. I. Порождающая задача из динамики многомерного твердого тела, помещенного в неконсервативное поле сил”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 211, ВИНИТИ РАН, М., 2022, 41–74  mathnet  crossref
  9. М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении четырехмерного многообразия. III. Силовые поля с диссипацией”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 212, ВИНИТИ РАН, М., 2022, 120–138  mathnet  crossref
  10. М. В. Шамолин, “Системы с конечным числом степеней свободы с диссипацией: анализ и интегрируемость. II. Общий класс динамических систем на касательном расслоении многомерной сферы”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 212, ВИНИТИ РАН, М., 2022, 139–148  mathnet  crossref
  11. М. В. Шамолин, “Системы с конечным числом степеней свободы с диссипацией: анализ и интегрируемость. III. Системы на касательных расслоениях гладких $n$-мерных многообразий”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 213, ВИНИТИ РАН, М., 2022, 96–109  mathnet  crossref
  12. М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении гладкого конечномерного многообразия. I. Уравнения геодезических на касательном расслоении гладкого $n$-мерного многообразия”, Алгебра, геометрия и комбинаторика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 214, ВИНИТИ РАН, М., 2022, 82–106  mathnet  crossref  mathscinet
  13. М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении гладкого конечномерного многообразия. II. Уравнения движения на касательном расслоении к $n$-мерному многообразию в потенциальном силовом поле”, Алгебра, геометрия и комбинаторика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 215, ВИНИТИ РАН, М., 2022, 81–94  mathnet  crossref
  14. М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении гладкого конечномерного многообразия. III. Уравнения движения на касательном расслоении к $n$-мерному многообразию в силовом поле с переменной диссипацией”, Алгебра, геометрия, дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 216, ВИНИТИ РАН, М., 2022, 133–152  mathnet  crossref
  15. М. В. Шамолин, “Случаи интегрируемых динамических систем произвольного нечетного порядка с диссипацией”, Материалы международной конференции по математическому моделированию в прикладных науках “International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19”. Белгород, 20–24 августа 2019 г., Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 195, ВИНИТИ РАН, М., 2021, 142–156  mathnet  crossref
  16. М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении двумерного многообразия”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 202, ВИНИТИ РАН, М., 2021, 43–69  mathnet  crossref
  17. М. В. Шамолин, “Семейства портретов классов динамических систем маятникового типа”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 202, ВИНИТИ РАН, М., 2021, 70–98  mathnet  crossref
  18. М. В. Шамолин, “Некоторые интегрируемые неавтономные динамические системы с диссипацией”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 202, ВИНИТИ РАН, М., 2021, 99–113  mathnet  crossref
  19. М. В. Шамолин, “Об устойчивости решений динамических систем с диссипацией”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 202, ВИНИТИ РАН, М., 2021, 114–125  mathnet  crossref
  20. М. В. Шамолин, “Топографические системы Пуанкаре и системы сравнения малых и высоких порядков”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 187, ВИНИТИ РАН, М., 2020, 50–67  mathnet  crossref  mathscinet
  21. М. В. Шамолин, “Случаи интегрируемых динамических систем девятого порядка с диссипацией”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 187, ВИНИТИ РАН, М., 2020, 68–81  mathnet  crossref  mathscinet
  22. М. В. Шамолин, “Предельные множества дифференциальных уравнений около сингулярных особых точек”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 187, ВИНИТИ РАН, М., 2020, 119–128  mathnet  crossref  mathscinet
  23. М. В. Шамолин, “Интегрируемые системы с переменной диссипацией на касательном расслоении к многомерной сфере и приложения”, Фундамент. и прикл. матем., 20:4 (2015), 3–231  mathnet  elib; M. V. Shamolin, “Integrable variable dissipation systems on the tangent bundle of a multi-dimensional sphere and some applications”, J. Math. Sci., 230:2 (2018), 185–353  crossref
  24. М. В. Шамолин, “Моделирование движения твердого тела в сопротивляющейся среде и аналогии с вихревыми дорожками”, Матем. моделирование, 27:1 (2015), 33–53  mathnet  elib; M. V. Shamolin, “Rigid body motion in a resisting medium modelling and analogues with vortex streets”, Math. Models Comput. Simul., 7:4 (2015), 389–400  crossref
  25. М. В. Шамолин, “Многообразие случаев интегрируемости в пространственной динамике твердого тела в неконсервативном поле сил”, Тр. сем. им. И. Г. Петровского, 30, Изд-во Моск. ун-та, М., 2014, 287–350  mathnet; M. V. Shamolin, “Some classes of integrable problems in spatial dynamics of a rigid body in a nonconservative force field”, J. Math. Sci. (N. Y.), 210:3 (2015), 292–330  crossref
  26. Н. В. Походня, М. В. Шамолин, “Некоторые условия интегрируемости динамических систем в трансцендентных функциях”, Вестн. СамГУ. Естественнонаучн. сер., 2013, № 9/1(110), 35–41  mathnet
  27. В. В. Трофимов, М. В. Шамолин, “Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем”, Фундамент. и прикл. матем., 16:4 (2010), 3–229  mathnet  mathscinet; V. V. Trofimov, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, J. Math. Sci., 180:4 (2012), 365–530  crossref
  28. М. В. Шамолин, “Динамические системы с переменной диссипацией: подходы, методы, приложения”, Фундамент. и прикл. матем., 14:3 (2008), 3–237  mathnet  mathscinet  zmath  elib; M. V. Shamolin, “Dynamical systems with variable dissipation: Approaches, methods, and applications”, J. Math. Sci., 162:6 (2009), 741–908  crossref  elib


© МИАН, 2025