RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, Number 1, Pages 29–35 (Mi vmumm2467)

On the asymptotics of Chebyshev polynomials that are orthogonal on a finite system of points
I. I. Sharapudinov

This publication is cited in the following articles:
  1. I. I. Sharapudinov, T. I. Sharapudinov, “Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogornal on a mesh”, Russian Math. (Iz. VUZ), 61:8 (2017), 59–70  mathnet  crossref  isi
  2. I. I. Sharapudinov, T. I. Sharapudinov, “Polynomials, orthogonal on Sobolev, derived by the Chebyshev polynomials, orthogonal on the uniform net”, Dagestanskie elektronnye matematicheskie izvestiya, 2016, no. 5, 56–75  mathnet  crossref
  3. I. I. Sharapudinov, “Smeshannye ryady po klassicheskim ortogonalnym polinomam”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 3, 1–254  mathnet  crossref
  4. I. I. Sharapudinov, T. I. Sharapudinov, “Ob odnovremennom priblizhenii funktsii i ikh proizvodnykh posredstvom polinomov Chebysheva, ortogonalnykh na ravnomernoi setke”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 74–117  mathnet  crossref  elib
  5. I. I. Sharapudinov, “Polinomy, ortogonalnye na setkakh iz edinichnoi okruzhnosti i chislovoi osi”, Dagestanskie elektronnye matematicheskie izvestiya, 2014, no. 1, 1–55  mathnet  crossref  elib
  6. I. I. Sharapudinov, M. S. Sultanakhmedov, T. N. Shakh-Emirov, T. I. Sharapudinov, M. G. Magomed-Kasumov, G. G. Akniev, R. M. Gadzhimirzaev, “Ob identifikatsii parametrov lineinykh sistem na osnove polinomov Chebysheva pervogo roda i polinomov Chebysheva, ortogonalnykh na ravnomernoi setke”, Dagestanskie elektronnye matematicheskie izvestiya, 2014, no. 2, 1–32  mathnet  crossref  elib
  7. E. Sh. Sultanov, “Ob asimptotike polinomov Chebysheva, ortogonalnykh na ravnomernoi setke”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 9:2 (2009), 44–49  mathnet  crossref  elib
  8. I. I. Sharapudinov, “Boundedness in $C[-1,1]$ of the de la Vallée-Poussin means for discrete Chebyshev–Fourier sums”, Sb. Math., 187:1 (1996), 141–158  mathnet  crossref  crossref  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025