This publication is cited in the following articles:
M. V. Shamolin, “Invarianty odnorodnykh dinamicheskikh sistem proizvolnogo nechetnogo poryadka s dissipatsiei. I. Sistemy tretego poryadka”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXV», Voronezh, 26-30 aprelya 2024 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 236, VINITI RAN, M., 2024, 72–88
M. V. Shamolin, “Invarianty odnorodnykh dinamicheskikh sistem proizvolnogo nechetnogo poryadka s dissipatsiei. II. Sistemy pyatogo poryadka”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXV», Voronezh, 26-30 aprelya 2024 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 237, VINITI RAN, M., 2024, 49–75
M. V. Shamolin, “Tenzornye invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem. I. Sistemy na kasatelnykh rassloeniyakh dvumernykh mnogoobrazii”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 27 yanvarya — 1 fevralya 2023 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 227, VINITI RAN, M., 2023, 100–128
M. V. Shamolin, “Tenzornye invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem. II. Sistemy na kasatelnykh rassloeniyakh trekhmernykh mnogoobrazii”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 27 yanvarya — 1 fevralya 2023 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 228, VINITI RAN, M., 2023, 92–118
M. V. Shamolin, “Tenzornye invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem. III. Sistemy na kasatelnykh rassloeniyakh chetyrekhmernykh mnogoobrazii”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 27 yanvarya — 1 fevralya 2023 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 229, VINITI RAN, M., 2023, 90–119
M. V. Shamolin, “Tenzornye invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem. IV. Sistemy na kasatelnykh rassloeniyakh $n$-mernykh mnogoobrazii”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXIV», Voronezh, 3-9 maya 2023 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 230, VINITI RAN, M., 2023, 96–130
M. V. Shamolin, “Nekotorye tenzornye invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem s chetyrmya stepenyami svobody”, Chebyshevskii sb., 24:3 (2023), 190–211
M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 205, VINITI RAN, M., 2022, 22–54
M. V. Shamolin, “Sistemy s chetyrmya stepenyami svobody s dissipatsiei: analiz i integriruemost”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 205, VINITI RAN, M., 2022, 55–94
M. V. Shamolin, “Sistemy s pyatyu stepenyami svobody s dissipatsiei: analiz i integriruemost. I. Porozhdayuschaya zadacha iz dinamiki mnogomernogo tverdogo tela, pomeschennogo v nekonservativnoe pole sil”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXII», Voronezh, 3–9 maya 2021 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 208, VINITI RAN, M., 2022, 91–121
M. V. Shamolin, “Sistemy s pyatyu stepenyami svobody s dissipatsiei: analiz i integriruemost. II. Dinamicheskie sistemy na kasatelnykh rassloeniyakh”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXII», Voronezh, 3–9 maya 2021 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 209, VINITI RAN, M., 2022, 88–107
M. V. Shamolin, “Nekotorye tenzornye invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem na kasatelnom rassloenii dvumernogo mnogoobraziya”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXII», Voronezh, 3–9 maya 2021 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 209, VINITI RAN, M., 2022, 108–116
M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya. I. Uravneniya geodezicheskikh”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 210, VINITI RAN, M., 2022, 77–95
M. V. Shamolin, “Nekotorye tenzornye invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 210, VINITI RAN, M., 2022, 96–105
M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya. II. Potentsialnye silovye polya”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 211, VINITI RAN, M., 2022, 29–40
M. V. Shamolin, “Sistemy s konechnym chislom stepenei svobody s dissipatsiei: analiz i integriruemost. I. Porozhdayuschaya zadacha iz dinamiki mnogomernogo tverdogo tela, pomeschennogo v nekonservativnoe pole sil”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 211, VINITI RAN, M., 2022, 41–74
M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya. III. Silovye polya s dissipatsiei”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 212, VINITI RAN, M., 2022, 120–138
M. V. Shamolin, “Sistemy s konechnym chislom stepenei svobody s dissipatsiei: analiz i integriruemost. II. Obschii klass dinamicheskikh sistem na kasatelnom rassloenii mnogomernoi sfery”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 212, VINITI RAN, M., 2022, 139–148
M. V. Shamolin, “Sistemy s konechnym chislom stepenei svobody s dissipatsiei: analiz i integriruemost. III. Sistemy na kasatelnykh rassloeniyakh gladkikh $n$-mernykh mnogoobrazii”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 213, VINITI RAN, M., 2022, 96–109
M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii gladkogo konechnomernogo mnogoobraziya. I. Uravneniya geodezicheskikh na kasatelnom rassloenii gladkogo $n$-mernogo mnogoobraziya”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 214, VINITI RAN, M., 2022, 82–106
M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii gladkogo konechnomernogo mnogoobraziya. II. Uravneniya dvizheniya na kasatelnom rassloenii k $n$-mernomu mnogoobraziyu v potentsialnom silovom pole”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 215, VINITI RAN, M., 2022, 81–94
M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii gladkogo konechnomernogo mnogoobraziya. III. Uravneniya dvizheniya na kasatelnom rassloenii k $n$-mernomu mnogoobraziyu v silovom pole s peremennoi dissipatsiei”, Algebra, geometriya, differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 216, VINITI RAN, M., 2022, 133–152
M. V. Shamolin, “Integriruemye odnorodnye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 202, VINITI RAN, M., 2021, 43–69
M. V. Shamolin, “Sluchai integriruemosti uravnenii dvizheniya pyatimernogo tverdogo tela pri nalichii vnutrennego i vneshnego silovykh polei”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 187, VINITI RAN, M., 2020, 82–118