М. В. Шамолин, “Инварианты однородных динамических систем произвольного нечетного порядка с диссипацией. I. Системы третьего порядка”, Материалы Воронежской международной весенней математической школы «Современные методы краевых задач. Понтрягинские чтения—XXXV», Воронеж, 26-30 апреля 2024 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 236, ВИНИТИ РАН, M., 2024, 72–88
М. В. Шамолин, “Инварианты однородных динамических систем произвольного нечетного порядка с диссипацией. II. Системы пятого порядка”, Материалы Воронежской международной весенней математической школы «Современные методы краевых задач. Понтрягинские чтения—XXXV», Воронеж, 26-30 апреля 2024 г. Часть 3, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 237, ВИНИТИ РАН, M., 2024, 49–75
М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. I. Системы на касательных расслоениях двумерных многообразий”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 227, ВИНИТИ РАН, М., 2023, 100–128
М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. II. Системы на касательных расслоениях трехмерных многообразий”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 228, ВИНИТИ РАН, М., 2023, 92–118
М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. III. Системы на касательных расслоениях четырехмерных многообразий”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 3, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 229, ВИНИТИ РАН, М., 2023, 90–119
М. В. Шамолин, “Тензорные инварианты геодезических, потенциальных и диссипативных систем. IV. Системы на касательных расслоениях $n$-мерных многообразий”, Материалы Воронежской международной весенней математической школы «Современные методы краевых задач. Понтрягинские чтения—XXXIV», Воронеж, 3-9 мая 2023 г. Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 230, ВИНИТИ РАН, М., 2023, 96–130
М. В. Шамолин, “Некоторые тензорные инварианты геодезических, потенциальных и диссипативных систем с четырьмя степенями свободы”, Чебышевский сб., 24:3 (2023), 190–211
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении трехмерного многообразия”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 205, ВИНИТИ РАН, М., 2022, 22–54
М. В. Шамолин, “Системы с четырьмя степенями свободы с диссипацией: анализ и интегрируемость”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 205, ВИНИТИ РАН, М., 2022, 55–94
М. В. Шамолин, “Системы с пятью степенями свободы с диссипацией: анализ и интегрируемость. I. Порождающая задача из динамики многомерного твердого тела, помещенного в неконсервативное поле сил”, Материалы Воронежской международной весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXXII», Воронеж, 3–9 мая 2021 г. Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 208, ВИНИТИ РАН, М., 2022, 91–121
М. В. Шамолин, “Системы с пятью степенями свободы с диссипацией: анализ и интегрируемость. II. Динамические системы на касательных расслоениях”, Материалы Воронежской международной весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXXII», Воронеж, 3–9 мая 2021 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 209, ВИНИТИ РАН, М., 2022, 88–107
М. В. Шамолин, “Некоторые тензорные инварианты геодезических, потенциальных и диссипативных систем на касательном расслоении двумерного многообразия”, Материалы Воронежской международной весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXXII», Воронеж, 3–9 мая 2021 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 209, ВИНИТИ РАН, М., 2022, 108–116
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении четырехмерного многообразия. I. Уравнения геодезических”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 210, ВИНИТИ РАН, М., 2022, 77–95
М. В. Шамолин, “Некоторые тензорные инварианты геодезических, потенциальных и диссипативных систем на касательном расслоении трехмерного многообразия”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 210, ВИНИТИ РАН, М., 2022, 96–105
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении четырехмерного многообразия. II. Потенциальные силовые поля”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 211, ВИНИТИ РАН, М., 2022, 29–40
М. В. Шамолин, “Системы с конечным числом степеней свободы с диссипацией: анализ и интегрируемость. I. Порождающая задача из динамики многомерного твердого тела, помещенного в неконсервативное поле сил”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 211, ВИНИТИ РАН, М., 2022, 41–74
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении четырехмерного многообразия. III. Силовые поля с диссипацией”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 212, ВИНИТИ РАН, М., 2022, 120–138
М. В. Шамолин, “Системы с конечным числом степеней свободы с диссипацией: анализ и интегрируемость. II. Общий класс динамических систем на касательном расслоении многомерной сферы”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 212, ВИНИТИ РАН, М., 2022, 139–148
М. В. Шамолин, “Системы с конечным числом степеней свободы с диссипацией: анализ и интегрируемость. III. Системы на касательных расслоениях гладких $n$-мерных многообразий”, Геометрия, механика и дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 213, ВИНИТИ РАН, М., 2022, 96–109
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении гладкого конечномерного многообразия. I. Уравнения геодезических на касательном расслоении гладкого $n$-мерного многообразия”, Алгебра, геометрия и комбинаторика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 214, ВИНИТИ РАН, М., 2022, 82–106
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении гладкого конечномерного многообразия. II. Уравнения движения на касательном расслоении к $n$-мерному многообразию в потенциальном силовом поле”, Алгебра, геометрия и комбинаторика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 215, ВИНИТИ РАН, М., 2022, 81–94
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении гладкого конечномерного многообразия. III. Уравнения движения на касательном расслоении к $n$-мерному многообразию в силовом поле с переменной диссипацией”, Алгебра, геометрия, дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 216, ВИНИТИ РАН, М., 2022, 133–152
М. В. Шамолин, “Интегрируемые однородные динамические системы с диссипацией на касательном расслоении двумерного многообразия”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 202, ВИНИТИ РАН, М., 2021, 43–69
М. В. Шамолин, “Случаи интегрируемости уравнений движения пятимерного твердого тела при наличии внутреннего и внешнего силовых полей”, Геометрия и механика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 187, ВИНИТИ РАН, М., 2020, 82–118