RUS
ENG
Full version
JOURNALS
// Zapiski Nauchnykh Seminarov POMI
Zap. Nauchn. Sem. POMI,
2000
,
Volume 263,
Pages
205–225
(Mi znsl1143)
The order of the Epstein zeta-function in the critical strip
O. M. Fomenko
This publication is cited in the following articles:
Hany Gerges, Antanas Laurinčikas, Renata Macaitienė, “A Joint Limit Theorem for Epstein and Hurwitz Zeta-Functions”,
Mathematics
,
12
:13 (2024),
1922
Antanas Laurinčikas, Renata Macaitienė, “A Generalized Discrete Bohr–Jessen-Type Theorem for the Epstein Zeta-Function”,
Mathematics
,
11
:4 (2023),
799
Antanas Laurinčikas, Renata Macaitienė, “A Generalized Bohr–Jessen Type Theorem for the Epstein Zeta-Function”,
Mathematics
,
10
:12 (2022),
2042
Antanas Laurinčikas, Renata Macaitienė, “A Bohr–Jessen Type Theorems for the Epstein Zeta-Function: III”,
Results Math
,
76
:2 (2021)
Antanas Laurinčikas, Renata Macaitienė, “A Bohr–Jessen Type Theorem for the Epstein Zeta-Function: II”,
Results Math
,
75
:1 (2020)
Valentin Blomer, “EPSTEIN ZETA-FUNCTIONS, SUBCONVEXITY, AND THE PURITY CONJECTURE”,
J. Inst. Math. Jussieu
,
19
:2 (2020),
581
Antanas Laurinčikas, Renata Macaitienė, “A Bohr–Jessen Type Theorem for the Epstein Zeta-Function”,
Results Math
,
73
:4 (2018)
Keiju SONO, “On the Fourth Moment of the Epstein Zeta Functions and the Related Divisor Problem”,
Tokyo J. Math.
,
36
:1 (2013)
©
Steklov Math. Inst. of RAS
, 2025