RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2000, Volume 263, Pages 205–225 (Mi znsl1143)

The order of the Epstein zeta-function in the critical strip
O. M. Fomenko

This publication is cited in the following articles:
  1. Hany Gerges, Antanas Laurinčikas, Renata Macaitienė, “A Joint Limit Theorem for Epstein and Hurwitz Zeta-Functions”, Mathematics, 12:13 (2024), 1922  crossref
  2. Antanas Laurinčikas, Renata Macaitienė, “A Generalized Discrete Bohr–Jessen-Type Theorem for the Epstein Zeta-Function”, Mathematics, 11:4 (2023), 799  crossref
  3. Antanas Laurinčikas, Renata Macaitienė, “A Generalized Bohr–Jessen Type Theorem for the Epstein Zeta-Function”, Mathematics, 10:12 (2022), 2042  crossref
  4. Antanas Laurinčikas, Renata Macaitienė, “A Bohr–Jessen Type Theorems for the Epstein Zeta-Function: III”, Results Math, 76:2 (2021)  crossref
  5. Antanas Laurinčikas, Renata Macaitienė, “A Bohr–Jessen Type Theorem for the Epstein Zeta-Function: II”, Results Math, 75:1 (2020)  crossref
  6. Valentin Blomer, “EPSTEIN ZETA-FUNCTIONS, SUBCONVEXITY, AND THE PURITY CONJECTURE”, J. Inst. Math. Jussieu, 19:2 (2020), 581  crossref
  7. Antanas Laurinčikas, Renata Macaitienė, “A Bohr–Jessen Type Theorem for the Epstein Zeta-Function”, Results Math, 73:4 (2018)  crossref
  8. Keiju SONO, “On the Fourth Moment of the Epstein Zeta Functions and the Related Divisor Problem”, Tokyo J. Math., 36:1 (2013)  crossref


© Steklov Math. Inst. of RAS, 2025