Binfang Gao, Xiaoxia Yang, Q.P. Liu, “Bi-Hamiltonian structure of a super KdV equation of Kupershmidt”, Applied Mathematics Letters, 159 (2025), 109280
Kai Tian, Hanyu Zhou, Cuiling Dong, “Nonlocal Symmetries of Geng-Wu's Super KdV Equation”, Acta Appl Math, 195:1 (2025)
Hanyu Zhou, Kai Tian, XiaoXia Yang, “A super mKdV equation: bi-Hamiltonian structures and Darboux transformations”, Pramana - J Phys, 98:2 (2024)
Hanyu Zhou, Kai Tian, Nianhua Li, “Four super integrable equations: nonlocal symmetries and applications”, J. Phys. A: Math. Theor., 55:22 (2022), 225207
Liming Zang, Q.P. Liu, “A super KdV equation of Kupershmidt: Bäcklund transformation, Lax pair and related discrete system”, Physics Letters A, 422 (2022), 127794
А. Мирза, М. Хассан, “Билинеаризация и солитонные решения суперсимметричной многокомпонентной бездисперсионной интегрируемой системы связанных уравнений”, ТМФ, 201:3 (2019), 361–370; A. Mirza, M. ul Hassan, “Bilinearization and soliton solutions of a supersymmetric multicomponent coupled dispersionless integrable system”, Theoret. and Math. Phys., 201:3 (2019), 1723–1731
Kitanine N., Nepomechie R.I., Reshetikhin N., “Quantum Integrability and Quantum Groups: a Special Issue in Memory of Petr P Kulish”, J. Phys. A-Math. Theor., 51:11 (2018), 110201
Corina N Babalic, A S Carstea, “Bilinear approach to Kuperschmidt super-KdV type equations”, J. Phys. A: Math. Theor., 51:22 (2018), 225204
“Основные научные труды Петра Петровича Кулиша”, Вопросы квантовой теории поля и статистической физики. 23, Зап. научн. сем. ПОМИ, 433, ПОМИ, СПб., 2015, 8–19
Anton M. Zeitlin, “Superopers on Supercurves”, Lett Math Phys, 105:2 (2015), 149
Zhou R., “a Darboux Transformation of the Sl(2 Vertical Bar 1) Super KdV Hierarchy and a Super Lattice Potential KdV Equation”, Phys. Lett. A, 378:26-27 (2014), 1816–1819
Ling ZHANG, Dafeng ZUO, “The super-bihamiltonian reduction on C∞(1, OSP(1|2))”, Acta Mathematica Scientia, 34:2 (2014), 537
Yair Zarmi, “Nonlinear quantum-dynamical system based on the Kadomtsev-Petviashvili II equation”, Journal of Mathematical Physics, 54:6 (2013)
Yair Zarmi, “Quantized representation of some nonlinear integrable evolution equations on the soliton sector”, Phys. Rev. E, 83:5 (2011)
Zeitlin A.M., “Integrability of superconformal field theory and SUSYN=1 KdV”, String Theory: From Gauge Interactions to Cosmology, NATO Science Series, Series II: Mathematics, Physics and Chemistry, 208, 2006, 393–396
П. П. Кулиш, А. М. Цейтлин, “Квантовый метод обратной задачи и (супер)конформная теория поля”, ТМФ, 142:2 (2005), 252–264; P. P. Kulish, A. M. Zeitlin, “Quantum inverse scattering method and (super)conformal field theory”, Theoret. and Math. Phys., 142:2 (2005), 211–221
Kulish P.P., Zeitlin A.M., “Superconformal field theory and SUSY $N=1$ KdV hierarchy. I. vertex operators and Yang–Baxter equation”, Phys. Lett. B, 597:2 (2004), 229–236
Kulish P.P., Zeitlin A.M., “Quantization of integrable models with hidden symmetries: super-KdV equation”, J. Mod. Opt., 51:6-7 (2004), 1107–1108
Kulish P.P., Zeitlin A.M., “Integrable structure of superconformal field theory and quantum super-KdV theory”, Phys. Lett. B, 581:1-2 (2004), 125–132