RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2007, Volume 351, Pages 54–78 (Mi znsl26)

Sharp dilation-type inequalities with fixed parameter of convexity
S. G. Bobkov, F. L. Nazarov

This publication is cited in the following articles:
  1. Malak Lafi, Artem Zvavitch, “Measure comparison problems for dilations of convex bodies”, Can. Math. Bull., 2025, 1  crossref
  2. Hiroshi Tsuji, “Analytic aspects of the dilation inequality for symmetric convex sets in Euclidean spaces”, Electron. J. Probab., 29:none (2024)  crossref
  3. Arnaud Marsiglietti, James Melbourne, “Geometric and Functional Inequalities for Log-Concave Probability Sequences”, Discrete Comput Geom, 71:2 (2024), 556  crossref
  4. A. N. Kalinin, “Localization for Hyperbolic Measures on Infinite-Dimensional Spaces”, Funct. Anal. Appl., 55:4 (2021), 286–297  mathnet  crossref  crossref  isi
  5. Tsuji H., “Dilation Type Inequalities For Strongly-Convex Sets in Weighted Riemannian Manifolds”, Anal. Geom. Metr. Spaces, 9:1 (2021), 219–253  crossref  mathscinet  isi
  6. Ganzburg M.I., “Polynomial Inequalities on Sets With K (M) -Concave Weighted Measures”, J. Anal. Math., 135:2 (2018), 389–411  crossref  mathscinet  zmath  isi  scopus
  7. Bogachev V.I., Kosov E.D., Zelenov G.I., “Fractional Smoothness of Distributions of Polynomials and a Fractional Analog of the Hardy-Landau-Littlewood Inequality”, Trans. Am. Math. Soc., 370:6 (2018), 4401–4432  crossref  mathscinet  zmath  isi  scopus
  8. Ganzburg M.I., “A multivariate Remez-type inequality with $\varphi$-concave weights”, Colloq. Math., 147:2 (2017), 221–240  crossref  mathscinet  zmath  isi  scopus
  9. Klartag Bo'az, “Needle Decompositions in Riemannian Geometry”, Mem. Am. Math. Soc., 249:1180 (2017), I–77  mathscinet  isi
  10. V. I. Bogachev, “Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures”, Russian Math. Surveys, 71:4 (2016), 703–749  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  11. Ganzburg M.I., “Multivariate polynomial inequalities of different
    $${L_{p,W}(V)}$$
    L p , W ( V ) -metrics with k-concave weights”, Acta Math. Hung., 150:1 (2016), 99–120  crossref  mathscinet  zmath  isi  scopus
  12. Sergey G. Bobkov, James Melbourne, “Hyperbolic measures on infinite dimensional spaces”, Probab. Surveys, 13:none (2016)  crossref
  13. S. G. Bobkov, J. Melbourne, “Localization for infinite-dimensional hyperbolic measures”, Dokl. Math., 91:3 (2015), 297  crossref
  14. Milman E., “A Proof of Bobkov's Spectral Bound for Convex Domains via Gaussian Fitting and Free Energy Estimation”, Analysis and Geometry of Metric Measure Spaces, CRM Proceedings & Lecture Notes, 56, eds. Dafni G., McCann R., Stancu A., Amer Mathematical Soc, 2013, 181–196  crossref  mathscinet  zmath  isi
  15. Fradelizi M., “Concentration inequalities for s-concave measures of dilations of Borel sets and applications”, Electron. J. Probab., 14:71 (2009), 2068–2090  crossref  mathscinet  zmath  isi  scopus


© Steklov Math. Inst. of RAS, 2025