RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2009, Volume 364, Pages 5–31 (Mi znsl3149)

A new strong invariance principle for sums of independent random vectors
U. Einmahl

This publication is cited in the following articles:
  1. Ian Waudby-Smith, David Arbour, Ritwik Sinha, Edward H. Kennedy, Aaditya Ramdas, “Time-uniform central limit theory and asymptotic confidence sequences”, Ann. Statist., 52:6 (2024)  crossref
  2. Claudia Kirch, Christina Stoehr, “Sequential change point tests based on U‐statistics”, Scandinavian J Statistics, 49:3 (2022), 1184  crossref
  3. Gauthier Dierickx, Uwe Einmahl, “A General Darling–Erdős Theorem in Euclidean Space”, J Theor Probab, 31:2 (2018), 1142  crossref
  4. Uwe Einmahl, Jim Kuelbs, “Cluster sets for partial sums and partial sum processes”, Ann. Probab., 42:3 (2014)  crossref
  5. A. Yu. Zaitsev, “The accuracy of strong Gaussian approximation for sums of independent random vectors”, Russian Math. Surveys, 68:4 (2013), 721–761  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  6. ZhengYan Lin, YueXu Zhao, “Strong approximation for ρ-mixing sequences”, Sci. China Math., 55:10 (2012), 2159  crossref
  7. Fu K.-A., “A general strong approximation theorem for dependent $\mathbf R^d$-valued random vectors”, J. Math. Anal. Appl., 384:2 (2011), 173–180  crossref  mathscinet  zmath  isi  scopus
  8. Worms J., Worms R., “Empirical likelihood based confidence regions for first order parameters of heavy-tailed distributions”, J. Statist. Plann. Inference, 141:8 (2011), 2769–2786  crossref  mathscinet  zmath  isi  scopus
  9. Fu K.-A., “An almost sure invariance principle for trimmed sums of random vectors”, Proc. Indian Acad. Sci. Math. Sci., 120:5 (2010), 611–618  crossref  mathscinet  zmath  isi  scopus
  10. A. Yu. Zaitsev, “The rate of Gaussian strong approximation for the sums of i.i.d. multidimensional random vectors”, J. Math. Sci. (N. Y.), 163:4 (2010), 399–408  mathnet  crossref


© Steklov Math. Inst. of RAS, 2025