RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2009, Volume 364, Pages 88–108 (Mi znsl3152)

Martingale-coboundary representation for a class of stationary random fields
M. I. Gordin

This publication is cited in the following articles:
  1. Lucas Reding, Na Zhang, “On the Quenched Functional Central Limit Theorem for Stationary Random Fields under Projective Criteria”, ALEA, 21:2 (2024), 1215  crossref
  2. Florence Merlevède, Magda Peligrad, Progress in Probability, 80, High Dimensional Probability IX, 2023, 229  crossref
  3. Zhang N., Reding L., Peligrad M., “On the Quenched Central Limit Theorem For Stationary Random Fields Under Projective Criteria”, J. Theor. Probab., 33:4 (2020), 2351–2379  crossref  mathscinet  zmath  isi  scopus
  4. Peligrad M. Volny D., “Quenched Invariance Principles For Orthomartingale-Like Sequences”, J. Theor. Probab., 33:3 (2020), 1238–1265  crossref  mathscinet  zmath  isi
  5. Peligrad M. Zhang N., “Central Limit Theorem For Fourier Transform and Periodogram of Random Fields”, Bernoulli, 25:1 (2019), 499–520  crossref  mathscinet  zmath  isi  scopus
  6. Volny D., “On Limit Theorems For Fields of Martingale Differences”, Stoch. Process. Their Appl., 129:3 (2019), 841–859  crossref  mathscinet  zmath  isi  scopus
  7. Volny D., “Martingale-Coboundary Representation For Stationary Random Fields”, Stoch. Dyn., 18:2 (2018), 1850011  crossref  mathscinet  zmath  isi  scopus
  8. Magda P. Zhang N., “Martingale Approximations For Random Fields”, Electron. Commun. Probab., 23 (2018), 28  crossref  mathscinet  zmath  isi  scopus
  9. Giraudo D., “Invariance Principle Via Orthomartingale Approximation”, Stoch. Dyn., 18:6 (2018), 1850043  crossref  mathscinet  zmath  isi  scopus
  10. Peligrad M. Zhang N., “On the Normal Approximation For Random Fields Via Martingale Methods”, Stoch. Process. Their Appl., 128:4 (2018), 1333–1346  crossref  mathscinet  zmath  isi  scopus
  11. Cohen G., Conze J.-P., “CLT for Random Walks of Commuting Endomorphisms on Compact Abelian Groups”, J. Theor. Probab., 30:1 (2017), 143–195  crossref  mathscinet  zmath  isi  scopus
  12. J. Math. Sci. (N. Y.), 219:5 (2016), 765–781  mathnet  crossref  mathscinet
  13. Volny D., “a Central Limit Theorem For Fields of Martingale Differences”, C. R. Math., 353:12 (2015), 1159–1163  crossref  mathscinet  zmath  isi  elib  scopus
  14. Volny D., Wang Y., “An Invariance Principle For Stationary Random Fields Under Hannan'S Condition”, Stoch. Process. Their Appl., 124:12 (2014), 4012–4029  crossref  mathscinet  zmath  isi  elib  scopus
  15. Denker M., Gordin M., “Limit Theorems For Von Mises Statistics of a Measure Preserving Transformation”, Probab. Theory Relat. Field, 160:1-2 (2014), 1–45  crossref  mathscinet  zmath  isi  scopus
  16. Banys P., Paulauskas V., “Clt for Linear Random Fields with Martingale Increments”, Lith. Math. J., 52:1 (2012), 13–28  crossref  mathscinet  zmath  isi  scopus
  17. Banys P., “CLT for linear random fields with stationary martingale-difference innovation”, Lith. Math. J., 51:3 (2011), 303–309  crossref  mathscinet  zmath  isi  scopus


© Steklov Math. Inst. of RAS, 2025