RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. LOMI, 1981, Volume 101, Pages 64–76 (Mi znsl3361)

Algebrogeometrical integration of the MNS equation, the finite-gap solutions and their degeneration
A. R. Its, V. B. Matveev

This publication is cited in the following articles:
  1. Jinbing Chen, Yanpei Zhen, “The complex Hamiltonian system in the Gerdjikov-Ivanov equation and its applications”, Anal.Math.Phys., 12:4 (2022)  crossref
  2. Jinbing Chen, Runsu Zhang, “The complex Hamiltonian systems and quasi‐periodic solutions in the derivative nonlinear Schrödinger equations”, Stud Appl Math, 145:2 (2020), 153  crossref
  3. Peng Zhao, Engui Fan, “Finite gap integration of the derivative nonlinear Schrödinger equation: A Riemann–Hilbert method”, Physica D: Nonlinear Phenomena, 402 (2020), 132213  crossref
  4. Vladimir P. Kotlyarov, “A Matrix Baker–Akhiezer Function Associated with the Maxwell–Bloch Equations and their Finite-Gap Solutions”, SIGMA, 14 (2018), 082, 27 pp.  mathnet  crossref
  5. V. B. Matveev, A. O. Smirnov, “Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach”, Theoret. and Math. Phys., 186:2 (2016), 156–182  mathnet  crossref  crossref  mathscinet  isi  elib
  6. Benoît Vicedo, “The method of finite-gap integration in classical and semi-classical string theory”, J. Phys. A: Math. Theor., 44:12 (2011), 124002  crossref
  7. Y. Charles Li, “Strange Tori of the Derivative Nonlinear Schrödinger Equation”, Lett Math Phys, 80:1 (2007), 83  crossref
  8. E. D. Belokolos, A. I. Bobenko, V. B. Matveev, V. Z. Ènol'skii, “Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations”, Russian Math. Surveys, 41:2 (1986), 1–49  mathnet  crossref  mathscinet  zmath  isi
  9. N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, A. M. Kurbatov, V. G. Samoilenko, “Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability”, Theoret. and Math. Phys., 65:2 (1985), 1154–1164  mathnet  crossref  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025