RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. LOMI, 1981, Volume 104, Pages 170–179 (Mi znsl3388)

Asymptotic solutions of the second order system of differential equations concentrated in a vicinity of a ray
V. E. Nomofilov

This publication is cited in the following articles:
  1. A. E. Baranov, A. I. Popov, I. Yu. Popov, “Modeling of Surface Water Waves Concentrated Near Moving Points”, J Math Sci, 277:4 (2023), 492  crossref
  2. A. E. Baranov, A. I. Popov, I. Yu. Popov, “Modelirovanie voln na poverkhnosti vody, sosredotochennykh v okrestnosti dvizhuschikhsya tochek”, Matematicheskie voprosy teorii rasprostraneniya voln. 50, Posvyaschaetsya devyanostoletiyu Vasiliya Mikhailovicha BABIChA, Zap. nauchn. sem. POMI, 493, POMI, SPb., 2020, 29–39  mathnet
  3. Xingguo Huang, Hui Sun, Zhangqing Sun, Nuno Vieira da Silva, “A complex point-source solution of the acoustic eikonal equation for Gaussian beams in transversely isotropic media”, GEOPHYSICS, 85:3 (2020), T191  crossref
  4. Protasov M.I., Borodin I., “Postroenie seismicheskikh izobrazhenii v anizotropnykh sredakh po mnogokomponentnym dannym vsp”, Interekspo geo-Sibir, 1 (2012), 78–82  elib
  5. Mikhasev G., “Traveling Wave Packets in a Non-Homogeneous Narrow Medium Bounded by a Surface of Revolution”, Wave Motion, 37:3 (2003), 207–217  crossref  zmath  isi
  6. V. A. Markov, “Concentrated solutions for internal wave equations”, J Math Sci, 38:1 (1987), 1645  crossref
  7. V. M. Babich, V. V. Ulin, “On complex ray solutions and eigenfunctions concentrated in a neighbourhood of the closed geodesic”, J. Soviet Math., 20:1 (1982), 1749–1753  mathnet  mathnet  crossref


© Steklov Math. Inst. of RAS, 2025