RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 1996, Volume 235, Pages 104–183 (Mi znsl3645)

Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a heavy rigid body
A. T. Fomenko

This publication is cited in the following articles:
  1. V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  2. S. S. Nikolaenko, “A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid”, Sb. Math., 205:2 (2014), 224–268  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  3. I. K. Kozlov, “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 205:4 (2014), 532–572  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  4. Anna Litvak-Hinenzon, Vered Rom-Kedar, “On Energy Surfaces and the Resonance Web”, SIAM J. Appl. Dyn. Syst., 3:4 (2004), 525  crossref


© Steklov Math. Inst. of RAS, 2025