RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. LOMI, 1980, Volume 95, Pages 3–54 (Mi znsl3801)

Integrable Hamiltonian systems connected with graded Lie algebras
A. G. Reiman

This publication is cited in the following articles:
  1. Zheng Wang, Chuanzhong Li, “On noncommutative modified KP systems”, Theoret. and Math. Phys., 221:2 (2024), 1882–1900  mathnet  crossref  crossref  adsnasa
  2. Bozidar Jovanović, Tijana Šukilović, Srdjan Vukmirović, “Integrable Systems Associated to the Filtrations of Lie Algebras”, Regul. Chaotic Dyn., 28:1 (2023), 44–61  mathnet  crossref  mathscinet
  3. V. Jurdjevic, “Lie Algebras and Integrable Systems: Elastic Curves and Rolling Geodesics”, Proc. Steklov Inst. Math., 321 (2023), 117–142  mathnet  crossref  crossref  mathscinet
  4. Dimitry Leites, Irina Shchepochkina, “Supertraces on Queerified Algebras”, Arnold Math J., 2023  crossref
  5. Velimir Jurdjevic, “Rolling Geodesics, Mechanical Systems and Elastic Curves”, Mathematics, 10:24 (2022), 4827  crossref
  6. Arne L. Larsen, “Considering the two spin and the two angular momenta string solutions in AdS5 × S5”, Nuclear Physics B, 984 (2022), 115931  crossref
  7. Jipeng Cheng, Maohua Li, Kelei Tian, “On the modified KP hierarchy: Tau functions, squared eigenfunction symmetries and additional symmetries”, Journal of Geometry and Physics, 134 (2018), 19  crossref
  8. Ian Marshall, “Spectral parameter dependent Lax pairs for systems of Calogero–Moser type”, Lett Math Phys, 107:4 (2017), 619  crossref
  9. Velimir Jurdjevic, “Affine-quadratic problems on Lie groups”, Mathematical Control & Related Fields, 3:3 (2013), 347  crossref
  10. Yuri N Fedorov, Božidar Jovanović, “Three natural mechanical systems on Stiefel varieties”, J. Phys. A: Math. Theor., 45:16 (2012), 165204  crossref
  11. Ruguang Zhou, Ying Kui, “Integrable fermionic extensions of the Garnier system and the anharmonic oscillator”, Applied Mathematics and Computation, 217:22 (2011), 9261  crossref
  12. V. V. Trofimov, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, J. Math. Sci., 180:4 (2012), 365–530  mathnet  crossref  mathscinet
  13. V. Dragović, B. Gajić, B. Jovanović, “Singular Manakov flows and geodesic flows on homogeneous spaces of SO(N)”, Transformation Groups, 14:3 (2009), 513  crossref
  14. Roman Kozlov, “High-order conservative discretizations for some cases of the rigid body motion”, Physics Letters A, 373:1 (2008), 23  crossref
  15. V.S. Gerdjikov, G. Vilasi, A.B. Yanovski, Lecture Notes in Physics, 748, Integrable Hamiltonian Hierarchies, 2008, 547  crossref
  16. V.S. Gerdjikov, G. Vilasi, A.B. Yanovski, Lecture Notes in Physics, 748, Integrable Hamiltonian Hierarchies, 2008, 315  crossref
  17. V.S. Gerdjikov, G. Vilasi, A.B. Yanovski, Lecture Notes in Physics, 748, Integrable Hamiltonian Hierarchies, 2008, 515  crossref
  18. V.S. Gerdjikov, G. Vilasi, A.B. Yanovski, Lecture Notes in Physics, 748, Integrable Hamiltonian Hierarchies, 2008, 37  crossref
  19. V.S. Gerdjikov, G. Vilasi, A.B. Yanovski, Lecture Notes in Physics, 748, Integrable Hamiltonian Hierarchies, 2008, 407  crossref
  20. V. JURDJEVIC, J. ZIMMERMAN, “Rolling sphere problems on spaces of constant curvature”, Math. Proc. Camb. Phil. Soc., 144:3 (2008), 729  crossref
  21. Anthony M. Bloch, Michael I. Gekhtman, “Lie algebraic aspects of the finite nonperiodic Toda flows”, Journal of Computational and Applied Mathematics, 202:1 (2007), 3  crossref
  22. L.-C. Li, C. Tomei, “The complete integrability of a Lie-Poisson system proposed by Bloch and Iserles”, International Mathematics Research Notices, 2006  crossref
  23. Yu.B. Suris, Lecture Notes in Physics, 644, Discrete Integrable Systems, 2004, 111  crossref
  24. L. Fehér, A. Gábor, “Adler–Kostant–Symes systems as Lagrangian gauge theories”, Physics Letters A, 301:1-2 (2002), 58  crossref
  25. Michèle Audin, “Actions hamiltoniennes de tores et jacobiennes généralisées”, Comptes Rendus. Mathématique, 334:1 (2002), 37  crossref
  26. Yuri B. Suris, “Integrable Discretizations of Some Cases of the Rigid Body Dynamics”, JNMP, 8:4 (2001), 534  crossref
  27. Laurent Gallot, Lecture Notes in Physics, 502, Supersymmetry and Integrable Models, 1998, 242  crossref
  28. László Fehér, Izumi Tsutsui, “Regularization of Toda lattices by Hamiltonian reduction”, Journal of Geometry and Physics, 21:2 (1997), 97  crossref
  29. W. Oevel, Algebraic Aspects of Integrable Systems, 1997, 261  crossref
  30. Michèle Audin, The Floer Memorial Volume, 1995, 109  crossref
  31. J. J. Morales, R. Ramirez, NATO ASI Series, 331, Hamiltonian Mechanics, 1994, 253  crossref
  32. H Aratyn, E Nissimov, S Pacheva, “Hamiltonian structures of the multi-boson KP hierarchies, abelianization and lattice formulation”, Physics Letters B, 331:1-2 (1994), 82  crossref
  33. H. Aratyn, L.A. Ferreira, A.H. Zimerman, “On discrete symmetries of the multi-boson KP hierarchies”, Physics Letters B, 327:3-4 (1994), 266  crossref
  34. H. Aratyn, E. Nissimov, S. Pacheva, A.H. Zimerman, “Two-matrix string model as constrained (2+1)-dimensional integrable system”, Physics Letters B, 341:1 (1994), 19  crossref
  35. W. Oevel, “A note on the Poisson brackets associated with Lax operators”, Physics Letters A, 186:1-2 (1994), 79  crossref
  36. Ziemowit Popowicz, “The Lax formulation of the “new” N=2 SUSY KdV equation”, Physics Letters A, 174:5-6 (1993), 411  crossref
  37. H Aratyn, E Nissimov, S Pacheva, “Construction of KP hierarchies in terms of finite number of fields and their abelianization”, Physics Letters B, 314:1 (1993), 41  crossref
  38. O. I. Bogoyavlenskii, “Euler equations on finite-dimensional Lie coalgebras, arising in problems of mathematical physics”, Russian Math. Surveys, 47:1 (1992), 117–189  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  39. H Aratyn, E Nissimov, S Pacheva, I Vaysburd, “R-matrix formulation of KP hierarchies and their gauge equivalence”, Physics Letters B, 294:2 (1992), 167  crossref
  40. V. E. Adler, “Lie-algebraic approach to nonlocal symmetries of integrable systems”, Theoret. and Math. Phys., 89:3 (1991), 1239–1248  mathnet  crossref  mathscinet  zmath  isi
  41. A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Math. USSR-Izv., 38:1 (1992), 69–90  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  42. J. Avan, M. Talon, “Graded R-matrices for integrable systems”, Nuclear Physics B, 352:1 (1991), 215  crossref
  43. North-Holland Mathematics Studies, 167, Topics in Soliton Theory, 1991, 397  crossref
  44. Hermann Flaschka, Luc Haine, “Variétés de drapeaux et réseaux de Toda”, Math Z, 208:1 (1991), 545  crossref
  45. A. I. Zhivkov, “Geometry of invariant manifolds of a gyroscope in the field of a quadratic potential”, Math. USSR-Izv., 37:1 (1991), 227–242  mathnet  crossref  mathscinet  zmath  adsnasa
  46. Robert Carroll, “On the ubiquitous Gelfand-Levitan-Mar?enko (GLM) equation”, Acta Appl Math, 18:2 (1990), 99  crossref
  47. A. Yu. Daletskii, G. B. Podkolzin, “A group approach to the integration of the infinite Toda chain”, Ukr Math J, 40:4 (1989), 445  crossref
  48. A. G. Reiman, M. A. Semenov-Tian-Shansky, “Lax representation with a spectral parameter for the kowalevski top and its generalizations”, Funct. Anal. Appl., 22:2 (1988), 158–160  mathnet  crossref  mathscinet  isi
  49. Frank W. Nijhoff, “Linear integral transformations and hierarchies of integrable nonlinear evolution equations”, Physica D: Nonlinear Phenomena, 31:3 (1988), 339  crossref
  50. A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems”, Russian Math. Surveys, 42:4 (1987), 1–63  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  51. A. G. Reyman, M. A. Semenov-Tjan-Shansky, “Lax representation with a spectral parameter for the Kowalewski top and its generalizations”, Lett Math Phys, 14:1 (1987), 55  crossref
  52. Ludwig D. Faddeev, Leon A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, 1987, 523  crossref
  53. “3. Topological obstructions to analytic integrability of geodesic flows on manifolds which are not simply connected”, J Math Sci, 39:3 (1987), 2739  crossref
  54. A. V. Mikhailov, A. B. Shabat, “Integrability conditions for systems of two equations of the form $u_t=A(u)u_{xx}+F(u,u_x)$. II”, Theoret. and Math. Phys., 66:1 (1986), 31–44  mathnet  crossref  mathscinet  zmath  isi
  55. A. G. Reyman, M. A. Semenov-Tian-Shansky, “A new integrable case of the motion of the 4-dimensional rigid body”, Commun.Math. Phys., 105:3 (1986), 461  crossref
  56. A. Yu. Orlov, E. I. Shulman, “Additional symmetries of the nonlinear Schrödinger equation”, Theoret. and Math. Phys., 64:2 (1985), 862–866  mathnet  crossref  mathscinet  zmath  isi
  57. O. I. Bogoyavlenskii, “Integrable cases of the dynamics of a rigid body, and integrable systems on the spheres $S^n$”, Math. USSR-Izv., 27:2 (1986), 203–218  mathnet  crossref  mathscinet  zmath
  58. A. G. Reiman, M. A. Semenov-Tyan-Shanskii, “Hamiltonian structure of Kadomtsev-Petviashvili type equations”, J Math Sci, 31:6 (1985), 3399  crossref
  59. R. Yu. Kirillova, “Explicit solutions of superized toda lattices”, J Math Sci, 28:4 (1985), 529  crossref
  60. M. A. Semenov-Tyan-Shanskii, “Classical r-matrices and the method of orbits”, J Math Sci, 28:4 (1985), 513  crossref
  61. D. A. Leites, M. A. Semenov-Tyan-Shanskii, “Integrable systems and lie superalgebras”, J Math Sci, 28:4 (1985), 525  crossref
  62. V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39:2 (1984), 1–67  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  63. M. V. Meshcheryakov, “A characteristic property of the inertial tensor of a multidimensional solid body”, Russian Math. Surveys, 38:5 (1983), 156–157  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  64. M. A. Semenov-Tian-Shansky, “What is a classical $r$-matrix?”, Funct. Anal. Appl., 17:4 (1983), 259–272  mathnet  crossref  mathscinet  zmath  isi
  65. N. Yu. Reshetikhin, L. D. Faddeev, “Hamiltonian structures for integrable models of field theory”, Theoret. and Math. Phys., 56:3 (1983), 847–862  mathnet  crossref  mathscinet  isi


© Steklov Math. Inst. of RAS, 2025