RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. LOMI, 1989, Volume 178, Pages 57–91 (Mi znsl4676)

On the functional model for dissipative operators. The coordinate-free approach
B. M. Solomyak

This publication is cited in the following articles:
  1. Ekin Uğurlu, “The spectral analysis of a system of first‐order equations with dissipative boundary conditions”, Math Methods in App Sciences, 44:14 (2021), 11046  crossref
  2. Yu. M. Arlinskiǐ, “Compressed Resolvents, Schur Functions, Nevanlinna Families and Their Transformations”, Complex Anal. Oper. Theory, 14:6 (2020)  crossref
  3. Ekin Uğurlu, “Coordinate-Free Approach for the Characteristic Function of a Fourth-Order Dissipative Operator”, Numerical Functional Analysis and Optimization, 40:16 (2019), 1877  crossref
  4. Ekin UĞURLU, Kenan TAŞ, “Dissipative operator and its Cayley transform”, Turk J Math, 41 (2017), 1404  crossref
  5. A. B. Aleksandrov, V. V. Peller, “Functions of perturbed dissipative operators”, St. Petersburg Math. J., 23:2 (2012), 209–238  mathnet  crossref  mathscinet  zmath  isi  elib  elib
  6. Alexander V. Kiselev, Operator Theory: Advances and Applications, 174, Operator Theory, Analysis and Mathematical Physics, 2007, 51  crossref
  7. D.V. Yakubovich, Proceedings. 2005 International Conference Physics and Control, 2005., 2005, 225  crossref
  8. Dmitry V. Yakubovich, “POLE PLACEMENT IN INFINITE DIMENSIONS AND FUNCTIONAL MODELS OF LINEAR OPERATORS”, IFAC Proceedings Volumes, 38:1 (2005), 372  crossref
  9. D. V. Yakubovich, “Linear-similar Sz.-Nagy–Foias model in a domain”, St. Petersburg Math. J., 15:2 (2004), 289–321  mathnet  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025