RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2013, Volume 417, Pages 106–127 (Mi znsl5707)

Minimal biconnected graphs
D. V. Karpov

This publication is cited in the following articles:
  1. D. V. Karpov, “On Semi-Reconstruction of Graphs of Connectivity 2”, J Math Sci, 275:2 (2023), 163  crossref
  2. N. Yu. Vlasova, “Kazhdyi $3$-svyaznyi graf na ne menee chem $13$ vershinakh imeet styagivaemyi $5$-vershinnyi podgraf”, Kombinatorika i teoriya grafov. XIII, Zap. nauchn. sem. POMI, 518, POMI, SPb., 2022, 5–93  mathnet
  3. N. A. Karol, “Restriction on minimum degree in the contractible sets problem”, Kombinatorika i teoriya grafov. XIII, Zap. nauchn. sem. POMI, 518, POMI, SPb., 2022, 114–123  mathnet
  4. D. V. Karpov, “O rekonstruktsii grafov svyaznosti $2$ s $2$-vershinnym mnozhestvom, delyaschim graf khotya by na $3$ chasti”, Kombinatorika i teoriya grafov. XIII, Zap. nauchn. sem. POMI, 518, POMI, SPb., 2022, 124–151  mathnet
  5. Karpov V D., “Large Contractible Subgraphs of a 3-Connected Graph”, Discuss. Math. Graph Theory, 41:1 (2021), 83–101  crossref  mathscinet  zmath  isi
  6. D. V. Karpov, “On semi-reconstruction of graphs of connectivity $2$”, Kombinatorika i teoriya grafov. XII, Zap. nauchn. sem. POMI, 497, POMI, SPb., 2020, 80–99  mathnet
  7. N. Yu. Vlasova, “O styagivaemykh 5-vershinnykh podgrafakh trekhsvyaznogo grafa”, Kombinatorika i teoriya grafov. X, Zap. nauchn. sem. POMI, 475, POMI, SPb., 2018, 22–40  mathnet
  8. D. V. Karpov, “Decomposition of a $2$-connected graph into three connected subgraphs”, J. Math. Sci. (N. Y.), 236:5 (2019), 490–502  mathnet  crossref
  9. Karpov D.V., “Minimal k-connected Graphs with Small Number of Vertices of Degree k”, Fundam. Inform., 145:3 (2016), 279–312  crossref  mathscinet  zmath  isi  elib  scopus
  10. D. V. Karpov, “Minimal $k$-connected graphs with minimal number of vertices of degree $k$”, J. Math. Sci. (N. Y.), 212:6 (2016), 666–682  mathnet  crossref  mathscinet


© Steklov Math. Inst. of RAS, 2025