RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki

Zh. Vychisl. Mat. Mat. Fiz., 1986, Volume 26, Number 4, Pages 632–636 (Mi zvmmf4028)

One-dimensional integro-differential equations of problems of diffraction by screens
E. V. Zakharov, I. V. Sobyanina

This publication is cited in the following articles:
  1. Krutitskii P.A., “The oblique derivative problem for the Helmholtz equation and scattering tidal waves”, R Soc Lond Proc Ser A Math Phys Eng Sci, 457:2011 (2001), 1735–1755  crossref  mathscinet  zmath  isi
  2. P. A. Krutitskiǐ, “The mixed problem for the Helmholtz equation in a multiply connected region”, Comput. Math. Math. Phys., 36:8 (1996), 1087–1095  mathnet  mathscinet  zmath  isi
  3. P. A. Krutitskii, “Neumann's problem for the Helmholtz equation outside cuts in the plane”, Comput. Math. Math. Phys., 34:11 (1994), 1421–1431  mathnet  mathscinet  zmath  isi
  4. P. A. Krutitskiǐ, “Dirichlet's problem for the Helmholtz equation outside cuts in a plane”, Comput. Math. Math. Phys., 34:8-9 (1994), 1073–1090  mathnet  mathscinet  zmath
  5. E. V. Zakharov, I. V. Khaleeva, “Hypersingular integral equations of the first kind of diffraction problems for electromagnetic waves on nonclosed surfaces”, Comput. Math. Math. Phys., 33:2 (1993), 281–286  mathnet  mathscinet  zmath  isi
  6. E. V. Zakharov, E. V. Nikitina, “Numerical analysis of electromagnetic fields excited in open resonators with axial symmetry”, Comput Math Model, 2:1 (1991), 92  crossref


© Steklov Math. Inst. of RAS, 2025