|
|
|
Список литературы
|
|
|
1. |
Rubio de Francia J. L., “A Littlewood–Paley inequality for arbitrary intervals”, Rev. Mat. Iberoamericana, 1:2 (1985), 1–14 |
2. |
Journé Jean-Lin, “Calderón–Zygmund operators on product spaces”, Rev. Mat. Iberoamericana, 1:3 (1985), 55–91 |
3. |
Soria Fernando, “A note on a Littlewood–Paley inequality for arbitrary intervals in $\mathbb R^2$”, J. London Math. Soc. (2), 36:1 (1987), 137–142 |
4. |
Bourgain J., “On square functions on the trigonometric system”, Bull. Soc. Math. Belg. Sér. B, 37:1 (1985), 20–26 |
5. |
Кисляков С. В., Парилов Д. В., “О теореме Литлвуда–Пэли для произвольных интервалов”, Зап. науч. семин. ПОМИ, 327, 2005, 98–114 |
6. |
Кисляков С. В., “Теорема Литлвуда–Пэли для произвольных интервалов: весовые оценки”, Зап. науч. семин. ПОМИ, 355, 2008, 180–198 |
7. |
Fefferman Robert, “Calderón–Zygmund theory for product domains: $H^p$ spaces”, Proc. Nat. Acad. Sci. USA, 83:4 (1986), 840–843 |
8. |
Carbery Anthony, Seeger Andreas, “$H^p$- and $L^p$-variants of multiparameter Calderón–Zygmund theory”, Trans. Amer. Math. Soc., 334:2 (1992), 719–747 |
9. |
Gundy R. F., Stein E. M., “$H^p$ theory for the poly-disc”, Proc. Nat. Acad. Sci. USA, 76:3 (1979), 1026–1029 |
10. |
Stein Elias M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser. Monogr. in Harmonic Analysis, III, 43, Princeton Univ. Press, Princeton, NJ, 1993 |
11. |
Chang S.-Y. A., Fefferman R., “The Calderón–Zygmund decomposition on product domains”, Amer. J. Math., 104:3 (1982), 455–468 |