|
|
|
Список литературы
|
|
|
1. |
Abbes A., Mokrane A., “Sous-groupes canoniques et cycles évanescents $p$-adiques pour les variétés abéliennes”, Publ. Math. Inst. Hautes Etudes Sci., 99 (2004), 117–162 |
2. |
Abbes A., Saito T., “Ramification of local fields with imperfect residue fields. I,”, Amer. J. Math., 124:5 (2002), 879–920 ; arXiv: math/0010103 |
3. |
Abbes A., Saito T., “Ramification of local fields with imperfect residue fields. II,”, Kazuya Kato's fiftieth birthday, Doc. Math., Extra Vol., 2003, 5–72, (electronic) |
4. |
Abbes A., Saito T., “Analyse micro-locale $l$-adique en caracteristique $p>0$: Le cas d'un trait”, Publ. Res. Inst. Math. Sci., 45:1 (2009), 25–74 |
5. |
Abbes A., Saito T., “Ramification and cleanliness”, Tohoku Math. J. (2), 63:4 (2011), 775–853 |
6. |
Abrashkin V. A., “On a local analogue of the Grothendieck conjecture”, Internat. J. Math., 11:2 (2000), 133–175 |
7. |
Abrashkin V. A., “Ramification theory for higher dimensional local fields”, Algebraic Number Theory and Algebraic Geometry, Contemp. Math., 300, Amer. Math. Soc., Providence, RI, 2002, 1–16 |
8. |
Абрашкин В. А., “Аналог гипотезы Гротендика для $2$-мерных локальных полей конечной характеристики”, Тр. Мат. ин-та РАН, 241, 2003, 8–42 |
9. |
Abrashkin V. A., “An analogue of the field-of-norms functor and of the Grothendieck conjecture”, J. Algebraic Geom., 16:4 (2007), 671–730 ; arXiv: math/0503200 |
10. |
Abrashkin V. A., “Modified proof of a local analogue of the Grothendieck conjecture”, J. Théor. Nombres Bordeaux, 22:1 (2010), 1–50 ; arXiv: 0907.3035 |
11. |
Barrientos I., Log ramification via curves in rank 1, Preprint, 2013, arXiv: 1307.5814 |
12. |
Berthelot P., “Introduction à la théorie arithmétique des . II $D$-modules”, Astérisque, 279 (2002), 1–80 |
13. |
Boltje R., Cram G.-M., Snaith V. P., “Conductors in the non-separable residue field case”, Algebraic $K$-theory and Algebraic Topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 407, Kluwer Acad. Publ., Dordrecht, 1993, 1–34 |
14. |
Bosch S., Güntzer U., Remmert R., Non-Archimedean analysis: a systematic approach to rigid analytic geometry, Grundlehren Math. Wiss., 261, Springer-Verlag, Berlin, 1984 |
15. |
Boubakri Y., Greuel G.-M., Markwig T., “Invariants of hypersurface singularities in positive characteristic”, Rev. Mat. Complut., 25:1 (2012), 61–85 ; arXiv: 1005.4503 |
16. |
Borger J. M., Kato's conductor and generic residual perfection, Preprint, 2002, arXiv: math/0112306 |
17. |
Borger J. M., “Conductors and the moduli of residual perfection”, Math. Ann., 329:1 (2004), 1–30 ; arXiv: math/0112305 |
18. |
Brylinski J.-L., “Théorie du corps de classes de Kato et revêtements abéliens de surfaces”, Ann. Inst. Fourier (Grenoble), 33:3 (1983), 23–38 |
19. |
Chiarellotto B., Pulita A., “Arithmetic and differential Swan conductors of rank one representations with finite local monodromy”, Amer. J. Math., 131:6 (2009), 1743–1794 |
20. |
Cutkosky S. D., Piltant O., “Ramification of valuations”, Adv. Math., 183:1 (2004), 1–79 |
21. |
Campillo A., Zhukov I. B., Curve singularities and ramification of surface morphisms (to appear) |
22. |
Deligne P., Letter to L. Illusie of 28.11.76, (unpublished) |
23. |
Deligne P., “Les corps locaux de caractéristique $p$, limites de corps locaux de caractéristique $0$”, Representations of Reductive Groups over a Local Field, Travaux en Cours, Hermann, Paris, 1984, 119–157 |
24. |
de Smit B., “Ramification groups of local fields with imperfect residue class field”, J. Number Theory, 44:3 (1993), 229–236 |
25. |
Epp H., “Eliminating wild ramification”, Invent. Math., 19 (1973), 235–249 |
26. |
Esnault H., Kerz M., A finiteness theorem for Galois representations of function fields over finite fields (after Deligne), Preprint, 2012, arXiv: 1208.0128 |
27. |
Фаизов И. Н., “Скачок ветвления в модельных расширениях степени $p$”, Зап. науч. семин. ПОМИ, 413, 2013, 183–218 |
28. |
Fesenko I. B., “Abelian local $p$-class field theory”, Math. Ann., 301:3 (1995), 561–586 |
29. |
Fesenko I. B., “Hasse–Arf property and abelian extensions”, Math. Nachr., 174 (1995), 81–87 |
30. |
Fesenko I. B., “Abelian extensions of complete discrete valuation fields”, Number Theory (Paris, 1993–1994), London Math. Soc. Lecture Note Ser., 235, Cambridge Univ. Press, Cambridge, 1996, 47–74 |
31. |
Fesenko I. B., “Nonabelian local reciprocity maps”, Class Field Theory its Centenary and Prospect (Tokyo, 1998), Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001, 63–78 |
32. |
Fesenko I. B., “Analysis on arithmetic schemes. II”, J. K-Theory, 5:3 (2010), 437–557 |
33. |
Fesenko I. B., Vostokov S. V., Local fields and their extensions. A constructive approach, 2nd ed., Amer. Math. Soc., Providence, RI, 2002 |
34. |
Fontaine J.-M., Wintenberger J.-P., “Extensions algébrique et corps des normes des extensions APF des corps locaux”, C. R. Acad. Sci. Paris Sér. A–B, 288:8 (1979), A441–A444 |
35. |
Fontaine J.-M., Wintenberger J.-P., “Le “corps des normes” de certaines extensions algébriques de corps locaux”, C. R. Acad. Sci. Paris Sér. A–B, 288:6 (1979), A367–A370 |
36. |
Hattori S., “Ramification correspondence of finite flat group schemes over equal and mixed characteristic local fields”, J. Number Theory, 132:10 (2012), 2084–2102 |
37. |
Hattori S., “On lower ramification subgroups and canonical subgroups”, Algebra and Number Theory, 8:2 (2014), 303–330 ; arXiv: 1208.5326 |
38. |
Invitation to higher local fields (Münster, 1999), Geometry and Topology Monographs, 3, Geom. Topol. Publ., Coventry, 2000 http://www.emis.de/journals/GT/ftp/main/m3/m3-hlf.pdf |
39. |
Hiranouchi T., “Ramification of truncated discrete valuation rings: a survey”, RIMS Kôkyûroku Bessatsu, B19, Res. Inst. Math. Sci. (RIMS), Kyoto, 2010, 35–43 |
40. |
Hiranouchi T., Taguchi Y., “Extensions of truncated discrete valuation rings”, Pure Appl. Math. Q., 4:4 (2008), 1205–1214 |
41. |
Hotta R., Takeuchi K., Tanisaki T., $D$-modules, perverse sheaves, and representation theory, Progr. Math., 236, Birkhäuser, Boston, MA, 2008 |
42. |
Hyodo K., “Wild ramification in the imperfect residue field case”, Adv. Stud. Pure Math., 12 (1987), 287–314 |
43. |
Иванова О. Ю., “Ранг топологической $K$-группы как $\mathbb Z_p$-модуля”, Алгебра и анализ, 20:4 (2008), 87–117 |
44. |
Иванова О. Ю., “О вязи классификации Курихары с теорией устранения ветвления”, Алгебра и анализ, 24:2 (2012), 130–153 |
45. |
Иванова О. Ю., “Классификация Курихары и расширения максимальной глубины для многомерных локальных полей”, Алгебра и анализ, 24:6 (2012), 42–76 |
46. |
Ikeda K. I., Serbest E., “Ramification theory in non-abelian local class field theory”, Acta Arith., 144:4 (2010), 373–393 |
47. |
Kato K., “Vanishing cycles, ramification of valuation and class field theory”, Duke Math. J., 55:3 (1987), 629–659 |
48. |
Kato K., “Swan conductors for characters of degree one in the imperfect residue field case”, Algebraic $K$-theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989, 101–131 |
49. |
Kato K., “Class field theory, $\mathcal D$-modules, and ramification on higher-dimensional schemes. I”, Amer. J. Math., 116:4 (1994), 757–784 |
50. |
Kato K., Saito T., “Ramification theory for varieties over a perfect field”, Ann. of Math. (2), 168:1 (2008), 33–96 |
51. |
Kato K., Saito T., “Ramification theory for varieties over a local field”, Publ. Math. Inst. Hautes Études Sci., 117 (2013), 1–178 ; arXiv: 1007.0310 |
52. |
Katz N. M., Exponential sums and differential equations, Ann. of Math. Stud., 124, Princeton Univ. Press, Princeton, NJ, 1990 |
53. |
Kedlaya K. S., “Local monodromy of $p$-adic differential equations: an overview”, Internat. J. Number Theory, 1:1 (2005), 109–154 |
54. |
Kedlaya K. S., “Fourier transforms and $p$-adic ‘Weil II’ ”, Compos. Math., 142:6 (2006), 1426–1450 |
55. |
Kedlaya K. S., “Swan conductors for $p$-adic differential modules. I, A local construction”, Algebra Number Theory, 1:3 (2007), 269–300 |
56. |
Kedlaya K. S., $p$-adic differential equations, Cambridge Stud. Adv. Math., 125, Cambridge Univ. Press, 2010 |
57. |
Kedlaya K. S., “Good formal structures for flat meromorphic connections. I, Surfaces”, Duke Math. J., 154:2 (2010), 343–418 |
58. |
Kedlaya K. S., “Swan conductors for $p$-adic differential modules. II, Global variation”, J. Inst. Math. Jussieu, 10:1 (2011), 191–224 |
59. |
Kedlaya K. S., “Good formal structures for flat meromorphic connections. II, Excellent schemes”, J. Amer. Math. Soc., 24:1 (2011), 183–229 |
60. |
Kedlaya K. S., Xiao L., “Differential modules on $p$-adic polyannuli”, J. Inst. Math. Jussieu, 9:1 (2010), 155–201 ; arXiv: 0804.1495 |
61. |
Köck B., “Computing the equivariant Euler characteristic of Zariski and étale sheaves on curves”, Homology, Homotopy Appl., 7:3 (2005), 83–98 |
62. |
Kuhlmann F.-V., “A correction to: “Elimination of wild ramification” by H. P. Epp”, Invent. Math., 153:3 (2003), 679–681 |
63. |
Kurihara M., “On two types of complete discrete valuation fields”, Compos. Math., 63:2 (1987), 237–257 |
64. |
Коротеев М. В., Жуков И. Б., “Устранение дикого ветвления”, Алгебра и анализ, 11:6 (1999), 153–177 |
65. |
Laumon G., “Semi-continuité du conducteur de Swan (d'après P. Deligne)”, Astérisque, 83 (1981), 173–219 |
66. |
Ломадзе В. Г., “К теории ветвления двумерных локальных полей”, Мат. сб., 109:3 (1979), 378–394 |
67. |
Melle-Hernández A., Wall C. T. C., “Pencils of curves on smooth surfaces”, Proc. London Math. Soc. (3), 83:2 (2001), 257–278 |
68. |
Miki H., “On $\mathbb Z_p$-extensions of complete $p$-adic power series fields and function fields”, J. Fac. Sci. Univ. Tokyo Sect. 1A, 21 (1974), 377–393 |
69. |
Miki H., “On the ramification numbers of cyclic $p$-extensions over local fields”, J. Reine Angew. Math., 328 (1981), 99–115 |
70. |
Milne J., Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, 1980 |
71. |
Mochizuki Sh., “A version of the Grothendieck conjecture for $p$-adic local fields”, Internat. J. Math., 8:4 (1997), 499–506 |
72. |
Mochizuki T., Wild harmonic bundles and wild pure twistor $D$-modules, Astérisque, 340, 2011 |
73. |
Пономарев К. Н., “Разрешимое устранение ветвления в расширениях дискретно нормированных полей”, Алгебра и логика, 37:1 (1998), 63–87 |
74. |
Пак Г. К., Востоков С. В., Жуков И. Б., “Расширения с почти максимальной глубиной ветвления”, Зап. науч. семин. ПОМИ, 265, 1999, 77–109 |
75. |
Saito T., “Wild ramification and the characteristic cycle of an $l$-adic sheaf”, J. Inst. Math. Jussieu, 8:4 (2009), 769–829 ; arXiv: 0705.2799 |
76. |
Saito T., “Wild ramification of schemes and sheaves”, Proc. Internat. Congress of Mathematicians (ICM 2010), Invited lectures, v. II, World Sci., Hackensack, NJ, 2011, 335–356 |
77. |
Saito T., “Ramification of local fields with imperfect residue fields. III”, Math. Ann., 352:3 (2012), 567–580 ; arXiv: 1005.2824 |
78. |
Scholl A. J., “Higher fields of norms and $(\phi,\Gamma)$-modules”, Doc. Math., 2006, Extra Vol., 685–709, (electronic) |
79. |
Serre J.-P., Corps locaux, 2nd ed., Hermann, Paris, 1968 |
80. |
Serre J.-P., Linear representations of finite groups, Grad. Texts in Math., 42, Springer-Verlag, New York–Heidelberg, 1977 |
81. |
Snaith V. P., Explicit Brauer induction, Cambridge Stud. Adv. Math., 40, Cambridge Univ. Press, Cambridge, 1994 |
82. |
Spriano L., Well and fiercely ramified extensions of complete discrete valuation fields, with applications to the Kato conductor, Thèse à l'Université Bordeaux I, 1999 |
83. |
Spriano L., “Well ramified extensions of complete discrete valuation fields with applications to the Kato conductor”, Canad. J. Math., 52:6 (2000), 1269–1309 |
84. |
Thomas L., “Ramification groups in Artin–Schreier–Witt extensions”, J. Théor. Nombres Bordeaux, 17:2 (2005), 689–720 |
85. |
Tian Y., “Canonical subgroups of Barsotti–Tate groups”, Ann. of Math. (2), 172:2 (2010), 955–988 |
86. |
Востоков С. В., Жуков И. Б., “Некоторые подходы к построению абелевых расширений для $\mathfrak p$-адических полей”, Тр. С.-Петербург. мат. о-ва, 3, 1994, 157–174 |
87. |
Wewers S., Fiercely ramified cyclic extensions of $p$-adic fields with imperfect residue field, Preprint, 2011, arXiv: 1104.3785 |
88. |
Whitney W. A., Functorial cohen rings, PhD thesis, Univ. California, Berkeley, 2002 |
89. |
Xiao L., “On ramification filtrations and $p$-adic differential equations. I, Equal characteristic case”, Algebra Number Theory, 4:8 (2010), 969–1027 ; arXiv: 0801.4962 |
90. |
Xiao L., “On Ramification Filtrations and $p$-adic Differential Equations. II, Mixed characteristic case”, Compos. Math., 148:2 (2012), 415–463 ; arXiv: 0811.3792 |
91. |
Xiao L., “On refined ramification filtrations in the equal characteristic case”, Algebra Number Theory, 6:8 (2012), 1579–1667 ; arXiv: 0911.1802 |
92. |
Xiao L., “Cleanness and log-characteristic cycles, I: vector bundles with flat connections”, Math. Ann. (to appear); arXiv: 1104.1224 |
93. |
Жуков И. Б., “Структурная теорема для полных полей”, Тр. С.-Петербург. мат. о-ва, 3, 1994, 175–192 |
94. |
Жуков И. Б., “Милноровские и топологические $K$-группы многомерных полных полей”, Алгебра и анализ, 9:1 (1997), 98–147 |
95. |
Zhukov I. B., “Ramification of surfaces: Artin–Schreier extensions”, Algebraic Number Theory and Algebraic Geometry, Contemp. Math., 300, Amer. Math. Soc., Providence, RI, 2002, 211–220 |
96. |
Zhukov I. B., Ramification of surfaces: sufficient jet order for wild jumps, Preprint, 2002, arXiv: math/0201071 |
97. |
Жуков И. Б., “О теории ветвления в случае несовершенного поля вычетов”, Мат. сб., 194:12 (2003), 3–30 |
98. |
Жуков И. Б., “Особенности дуг и циклические накрытия поверхностей”, Тр. С.-Петербург. мат. о-ва, 11, 2004, 49–66 |
99. |
Жуков И. Б., “Полуглобальные модели расширений двумерных локальных полей”, Вестн. С.-Петербург. ун-та. Сер. 1, 2010, № 1, 39–45 |
100. |
Жуков И. Б., “Ветвление элементарно абелевых расширений”, Зап. науч. семин. ПОМИ, 413, 2013, 106–114 |
101. |
Жуков И. Б., “Элементарно абелев кондуктор”, Зап. науч. семин. ПОМИ, 423, 2014, 126–131 |