RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 2015, Volume 27, Issue 5, Pages 32–68 (Mi aa1454)

Haar negligibility of positive cones in Banach spaces
J. Esterle, É. Matheron, P. Moreau

References

1. Albiac F., Kalton N.|J., Topics in Banach space theory, Grad. Texts in Math., 233, Springer, New York, 2006  mathscinet
2. Benyamini Y., Lindenstrauss J., Geometric nonlinear functional analysis, Amer. Math. Soc. Colloq. Publ., 48, Amer. Math. Soc., Providence, RI, 2000  mathscinet  zmath
3. Bogachev V. I., Gaussian mesures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998  crossref  mathscinet
4. Borwein J., Noll D., “Second order differentiability of convex functions in Banach spaces”, Trans. Amer. Math. Soc., 342:1 (1994), 43–81  crossref  mathscinet  zmath  isi
5. Bourgain J., Tzafriri L., “On a problem of Kadison and Singer”, J. Reine Angew. Math., 420 (1991), 1–43  mathscinet  zmath  isi
6. Probability distributions in Banach spaces, Reidel, Dordrecht, 1987  mathscinet
7. Christensen J. P. R., “On sets of Haar measure zero in abelian Polish groups”, Israel J. Math., 13 (1972), 255–260  crossref  mathscinet
8. Christensen J. P. R., Topology and Borel structures, North-Holland Math. Stud., 10, North-Holland Publ. Co., Amsterdam–London, 1974  mathscinet
9. Csörnyei M., “Aronszajn null and Gaussian null sets coincide”, Israel J. Math., 111 (1999), 191–201  crossref  mathscinet  zmath  isi
10. Gasparis I., “New examples of $c_0$-saturated Banach spaces. II”, J. Funct. Anal., 256:11 (2009), 3830–3840  crossref  mathscinet  zmath  isi
11. Godefroy G., Kalton N. J., Lancien G., “Subspaces of $c_0(\mathbb N)$ and Lipschitz isomorphisms”, Geom. Funct. Anal., 10:4 (2000), 798–820  crossref  mathscinet  zmath  isi
12. Hunt B. R., Sauer T., Yorke J. A., “Prevalence: a translation invariant “almost every” on infinite-dimensional spaces”, Bull. Amer. Math. Soc. (N.S.), 27:2 (1992), 217–238  crossref  mathscinet  zmath
13. Lefèvre P., Matheron É., Primot A., “Smoothness, asymptotic smoothness and the Blum–Hanson property”, Israel J. Math. (to appear)
14. Leung D. H., “On $c_0$-saturated Banach spaces”, Illinois J. Math., 39:1 (1995), 15–29  mathscinet  zmath  adsnasa  isi
15. Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. I, Ergeb. Math. Grenzgeb., 92, Sequence spaces, Springer-Verlag, Berlin, 1977  mathscinet  zmath
16. Matouskova E., “Convexity and Haar null sets”, Proc. Amer. Math. Soc., 125:6 (1997), 1793–1799  crossref  mathscinet  zmath  isi
17. Matouskova E., “The Banach–Saks property and Haar null sets”, Comment. Math. Univ. Carolin., 39:1 (1998), 71–80  mathscinet  zmath
18. Matouskova E., “Translating finite sets into convex sets”, Bull. London Math. Soc., 33:6 (2001), 711–714  crossref  mathscinet  zmath
19. Matouskova E., Stegall C., “A characterization of reflexive Banach spaces”, Proc. Amer. Math. Soc., 124:4 (1996), 1083–1090  crossref  mathscinet  zmath  isi
20. Moreau P., Notions de petitesse, géométrie des espaces de Banach et hypercyclicité, Thèse, Univ. Bordeaux, 2009
21. Odell E., “On quotients of Banach spaces having shrinking unconditional bases”, Illinois J. Math., 36:4 (1992), 681–695  mathscinet  zmath  isi
22. Phelps R. R., “Gaussian null sets and differentiability of Lipschitz maps on Banach spaces”, Pacific J. Math., 77:2 (1978), 523–531  crossref  mathscinet  zmath
23. Ptak V., “A combinatorial lemma on the existence of convex means and its application to weak compactness”, Proc. Symp. Pure Math., 7, Amer. Math. Soc., Providence, RI, 1963, 437–450  crossref  mathscinet
24. Saint-Raymond J., “Quasi-bounded trees and analytic inductions”, Fund. Math., 191:2 (2006), 175–185  crossref  mathscinet  zmath  isi
25. Solecki S., “Haar null and non-dominating sets”, Fund. Math., 170:1–2 (2001), 197–217  crossref  mathscinet  zmath  isi
26. Todorcevic S., Topics in topology, Lecture Notes Math., 1652, Springer-Verlag, Berlin, 1997  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025