|
|
|
References
|
|
|
1. |
Albiac F., Kalton N.|J., Topics in Banach space theory, Grad. Texts in Math., 233, Springer, New York, 2006 |
2. |
Benyamini Y., Lindenstrauss J., Geometric nonlinear functional analysis, Amer. Math. Soc. Colloq. Publ., 48, Amer. Math. Soc., Providence, RI, 2000 |
3. |
Bogachev V. I., Gaussian mesures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 |
4. |
Borwein J., Noll D., “Second order differentiability of convex functions in Banach spaces”, Trans. Amer. Math. Soc., 342:1 (1994), 43–81 |
5. |
Bourgain J., Tzafriri L., “On a problem of Kadison and Singer”, J. Reine Angew. Math., 420 (1991), 1–43 |
6. |
Probability distributions in Banach spaces, Reidel, Dordrecht, 1987 |
7. |
Christensen J. P. R., “On sets of Haar measure zero in abelian Polish groups”, Israel J. Math., 13 (1972), 255–260 |
8. |
Christensen J. P. R., Topology and Borel structures, North-Holland Math. Stud., 10, North-Holland Publ. Co., Amsterdam–London, 1974 |
9. |
Csörnyei M., “Aronszajn null and Gaussian null sets coincide”, Israel J. Math., 111 (1999), 191–201 |
10. |
Gasparis I., “New examples of $c_0$-saturated Banach spaces. II”, J. Funct. Anal., 256:11 (2009), 3830–3840 |
11. |
Godefroy G., Kalton N. J., Lancien G., “Subspaces of $c_0(\mathbb N)$ and Lipschitz isomorphisms”, Geom. Funct. Anal., 10:4 (2000), 798–820 |
12. |
Hunt B. R., Sauer T., Yorke J. A., “Prevalence: a translation invariant “almost every” on infinite-dimensional spaces”, Bull. Amer. Math. Soc. (N.S.), 27:2 (1992), 217–238 |
13. |
Lefèvre P., Matheron É., Primot A., “Smoothness, asymptotic smoothness and the Blum–Hanson property”, Israel J. Math. (to appear) |
14. |
Leung D. H., “On $c_0$-saturated Banach spaces”, Illinois J. Math., 39:1 (1995), 15–29 |
15. |
Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. I, Ergeb. Math. Grenzgeb., 92, Sequence spaces, Springer-Verlag, Berlin, 1977 |
16. |
Matouskova E., “Convexity and Haar null sets”, Proc. Amer. Math. Soc., 125:6 (1997), 1793–1799 |
17. |
Matouskova E., “The Banach–Saks property and Haar null sets”, Comment. Math. Univ. Carolin., 39:1 (1998), 71–80 |
18. |
Matouskova E., “Translating finite sets into convex sets”, Bull. London Math. Soc., 33:6 (2001), 711–714 |
19. |
Matouskova E., Stegall C., “A characterization of reflexive Banach spaces”, Proc. Amer. Math. Soc., 124:4 (1996), 1083–1090 |
20. |
Moreau P., Notions de petitesse, géométrie des espaces de Banach et hypercyclicité, Thèse, Univ. Bordeaux, 2009 |
21. |
Odell E., “On quotients of Banach spaces having shrinking unconditional bases”, Illinois J. Math., 36:4 (1992), 681–695 |
22. |
Phelps R. R., “Gaussian null sets and differentiability of Lipschitz maps on Banach spaces”, Pacific J. Math., 77:2 (1978), 523–531 |
23. |
Ptak V., “A combinatorial lemma on the existence of convex means and its application to weak compactness”, Proc. Symp. Pure Math., 7, Amer. Math. Soc., Providence, RI, 1963, 437–450 |
24. |
Saint-Raymond J., “Quasi-bounded trees and analytic inductions”, Fund. Math., 191:2 (2006), 175–185 |
25. |
Solecki S., “Haar null and non-dominating sets”, Fund. Math., 170:1–2 (2001), 197–217 |
26. |
Todorcevic S., Topics in topology, Lecture Notes Math., 1652, Springer-Verlag, Berlin, 1997 |