RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 2015, Volume 27, Issue 6, Pages 14–40 (Mi aa1465)

On Chow weight structures for $cdh$-motives with integral coefficients
M. V. Bondarko, M. A. Ivanov

References

1. Beilinson A., Bernstein J., Deligne P., “Faisceaux pervers”, Astérisque, 100, Soc. Math. France, Paris, 1982, 5–171  mathscinet
2. Beilinson A. A., “Vysshie regulyatory i znacheniya $L$-funktsii”, Itogi nauki i tekhn. Sovrem. probl. mat. Nov. dostizh., 24, VINITI, M., 1984, 181–238  mathnet  mathscinet  zmath
3. Bondarko M., “Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)”, J. $K$-theory, 6:3 (2010)  mathscinet  zmath; arXiv: 0704.4003
4. Bondarko M. V., “$\mathbb Z[\frac1p]$-motivic resolution of singularities”, Compos. Math., 147:5 (2011), 1434–1446  crossref  mathscinet  zmath  isi
5. Bondarko M. V., “Weight structures and “weights” on the hearts of $t$-structures”, Homology Appl., 14:1 (2012), 239–261  crossref  mathscinet  zmath  isi  elib; arXiv: 1011.3507
6. Bondarko M. V., On weights for relative motives with integral coefficients, Preprint, 2013, arXiv: 1304.2335
7. Bondarko M. V., “Weights for relative motives: relation with mixed complexes of sheaves”, Int. Math. Res. Not. IMRN, 17 (2014), 4715–4767  mathscinet  zmath; arXiv: 1007.4543
8. Bondarko M. V., On perverse homotopy $t$-structures, coniveau spectral sequences, cycle modules, and relative Gersten weight structures, Preprint, 2014, arXiv: 1409.0525
9. Bondarko M. V., “Mixed motivic sheaves (and weights for them) exist if “ordinary” mixed motives do”, Compos. Math., 151:5 (2015), 917–956  crossref  mathscinet  zmath  isi  elib; arXiv: 1105.0420
10. Cisinski D.-C., Déglise F., Triangulated categories of mixed motives, Preprint, 2009; arXiv: 0912.2110v3
11. Cisinski D., Déglise F., “Étale motives”, Comp. Math., 2015, published online  crossref; arXiv: 1305.5361
12. Cisinski D., Déglise F., Integral mixed motives in equal characteristic, Preprint, 2014, arXiv: 1410.6359
13. Déglise F., On the homotopy heart of mixed motives, Preprint, http://perso.ens-lyon.fr/frederic.deglise/docs/2014/modhtpb.pdf, 2014
14. Gillet H., Soulé C., “Descent, motives and $K$-theory”, J. Reine Angew. Math., 478 (1996), 127–176  mathscinet  zmath  isi
15. Hébert D., “Structure de poids a la Bondarko sur les motifs de Beilinson”, Compos. Math., 147:5 (2011), 1447–1462  crossref  mathscinet  zmath  isi
16. Huber A., “Mixed perverse sheaves for schemes over number fields”, Compos. Math., 108:1 (1997), 107–121  crossref  mathscinet  zmath  isi
17. Jin F., Borel–Moore motivic homology and weight structure on mixed motives, Preprint, 2015, arXiv: 1502.03956
18. Levine M., Mixed motives, Math. Surveys Monogr., 57, Amer. Math. Soc., Providence, RI, 1998  crossref  mathscinet  zmath
19. Neeman A., Triangulated categories, Ann. of Math. Stud., 148, Princeton Univ. Press, Princeton, NJ, 2001  mathscinet  zmath
20. Scholl A., “Integral elements in $K$-theory and products of modular curves”, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C, 548, Kluwer Acad. Publ., Dordrecht, 2000, 467–489  mathscinet  zmath
21. Sosnilo V. A., Weight structures in localizations (revisited) and the weight lifting property, Preprint, 2015, arXiv: 1510.03403
22. Wildeshaus J., “Motivic intersection complex”, Regulators, v. III, Contemp. Math., 571, Amer. Math. Soc., Providence, RI, 2012, 255–276  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025