RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 2015, Volume 27, Issue 6, Pages 117–149 (Mi aa1469)

Tate sequences and Fitting ideals of Iwasawa modules
C. Greither, M. Kurihara

References

1. Cornacchia P., Greither C., “Fitting ideals of class groups of real fields with prime power conductor”, J. Number Theory, 73:2 (1998), 459–471  crossref  mathscinet  zmath  isi
2. Greither C., “Computing Fitting ideals of Iwasawa modules”, Math. Z., 246:4 (2004), 733–767  crossref  mathscinet  zmath  isi
3. Greither C., “Determining Fitting ideals of minus class groups via the equivariant Tamagawa number conjecture”, Compos. Math., 143:6 (2007), 1399–1426  crossref  mathscinet  zmath  isi
4. Greither C., Kurihara M., “Stickelberger elements, Fitting ideals of class groups of CM fields, and dualisation”, Math. Z., 260:4 (2008), 905–930  crossref  mathscinet  zmath  isi
5. Kurihara M., “Iwasawa theory and Fitting ideals”, J. Reine Angew. Math., 561 (2003), 39–86  mathscinet  zmath  isi
6. Kurihara M., “On the structure of ideal class groups of CM fields”, Doc. Math., 2003, Extra vol., 539–563  mathscinet  zmath
7. Kurihara M., “On stronger versions of Brumer's conjecture”, Tokyo J. Math., 34:2 (2011), 407–428  crossref  mathscinet  zmath  isi
8. Kurihara M., Miura T., “Stickelberger ideals and Fitting ideals of class groups for abelian number fields”, Math. Ann., 350:3 (2011), 549–575  crossref  mathscinet  zmath  isi
9. Kurihara M., Miura T., “Ideal class groups of CM-fields with non-cyclic Galois action”, Tokyo J. Math., 35:2 (2012), 411–439  crossref  mathscinet  zmath  isi
10. Mazur B., Wiles A., “Class fields of abelian extensions of $\mathbb Q$”, Invent. Math., 76:2 (1984), 179-330  crossref  mathscinet  zmath  isi
11. Wiles A., “The Iwasawa conjecture for totally real fields”, Ann. of Math. (2), 131:3 (1990), 493–540  crossref  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025