RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 2015, Volume 27, Issue 6, Pages 174–198 (Mi aa1472)

Riemann's zeta function and finite Dirichlet series
Yu. V. Matiyasevich

References

1. Beliakov G., Matiyasevich Yu., “A parallel algorithm for calculation of determinants and minors using arbitrary precision arithmetic”, BIT Numerical Mathematics, 56:1 (2016), 33–50  crossref  mathscinet  zmath; arXiv: 1308.1536
2. Beliakov G., Matiyasevich Yu., Zeroes of Riemann's zeta function on the critical line with $40000$ decimal digits accuracy, Research Data Australia, http://hdl.handle.net/10536/DRO/DU:30056270, 2013
3. Beliakov G., Matiyasevich Yu., “Approximation of Riemann's zeta function by finite Dirichlet series: A multiprecision numerical approach”, Experimental Math., 24:2 (2015), 150–161  crossref  mathscinet  zmath  elib; arXiv: 1402.5295
4. Johansson F., Arb, http://fredrikj.net/arb/
5. Matiyasevich Yu., Finite Dirichlet series with prescribed zeroes, http://logic.pdmi.ras.ru/~yumat/personaljournal/finitedirichlet
6. Matiyasevich Yu., Research Reports MA12-03, http://www2.le.ac.uk/departments/mathematics/research/research-reports-2/reports-2012/ma12-03/view, http://logic.pdmi.ras.ru/~yumat/talks/leicester_2012/MA12_03Matiyasevich.pdf, Depart. Math. Univ. Leicester New conjectures about zeroes of Riemann's zeta function, 2012
7. Matiyasevich Yu., Calculation of Riemann's zeta function via interpolating determinants, Preprint 2013-18, http://www.mpim-bonn.mpg.de/preblob/5368, http://logic.pdmi.ras.ru/~yumat/talks/bonn_2013/5368.pdf, Max Planck Instit. Math., Bonn, 2013
8. Riemann B., “Über die Anzhal der Primzahlen unter einer gegebenen Grösse”, Monatsber. Berlin. Akad., 1859, 671–680


© Steklov Math. Inst. of RAS, 2025