RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 2015, Volume 27, Issue 6, Pages 199–233 (Mi aa1473)

Zeta integrals on arithmetic surfaces
T. Oliver

References

1. Beilinson A. A., “Vychety i adeli”, Funkts. anal. i ego pril., 14:1 (1980), 37–43  mathnet  mathscinet  zmath
2. Bloch S., “de Rham cohomology and conductors of curves”, Duke Math. J., 54:2 (1987), 295–308  crossref  mathscinet  zmath  isi
3. Bourbaki N., Elements of Mathematics. General Topology, Pt. I, II, Hermann, Paris, 1966
4. Brouw I. I., Wewers S., Computing $L$-functions and semistable reduction of superelliptic curves, 2012, arXiv: 1211.4459v1
5. Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 75–109  crossref  mathscinet  zmath
6. Fesenko I., Ricotta G., Suzuki M., “Mean-periodicity and zeta functions”, Ann. L'Inst. Fourier (Grenoble), 12:5 (2012), 1819–1887  crossref  mathscinet
7. Fesenko I. B., “Analysis on arithmetic schemes. I”, Doc. Math., 2003, Extra vol., 261–284  mathscinet  zmath
8. Fesenko I. B., “Mera. integrirovanie i elementy garmonicheskogo analiza na obobschennykh prostranstvakh petel”, Tr. S.-Peterburg. mat. o-va, 12, 2006, 179–199
9. Fesenko I. B., “Adelic approach to the zeta function of arithmetic schemes in dimension two”, Moscow Math. J., 8:2 (2008), 273–317  mathnet  mathscinet  zmath  isi
10. Fesenko I. B., “Analysis on arithmetic schemes. II”, J. $K$-theory, 5:3 (2010), 437–557  mathscinet  zmath  isi
11. Fesenko I. B., Geometric adeles and the Riemann–Roch theorem for $1$-cycles on surfaces, Preprint 2012-36, Max Planck Inst. Math., Bonn
12. Fesenko I. B., Kurihara M. (eds.), Invitation to higher local fields, Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000  crossref  mathscinet  zmath
13. Fesenko I. B., Vostokov S. V., Local fields and their extensions, 2nd ed., Amer. Math. Soc., Providence, RI, 2002  mathscinet  zmath
14. Hrushovski E., Kazhdan D., “Integration in valued fields”, Progr. Math., 253, Birkhäuser, Boston, 2006, 261–405  crossref  mathscinet  zmath
15. Huber A., “On the Parshin–Beilinson adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273  crossref  mathscinet  zmath  isi
16. Kim H. H., Lee K.-H., “Spherical Hecke algebras of $SL2$ over $2$-dimensional local fields”, Amer. J. Math., 126:6 (2004), 1381–1399  crossref  mathscinet  zmath  isi
17. Liu Q., Algebraic geometry and arithmetic curves, Oxford Grad. Texts Math., 6, Oxford Univ. Press, Oxford, 2002  mathscinet  zmath
18. Meyer R., “On a representation of the idele class group related to primes and zeros of $L$-functions”, Duke Math. J., 127:3 (2005), 519–595  crossref  mathscinet  zmath  isi
19. Morrow M. T., Fubini's theorem and non-linear change of variables over a two-dimensional local field, 2007, arXiv: 0712.2177v3
20. Morrow M. T., “Integration on valuation fields over local fields”, Tokyo J. Math., 33:1 (2010), 235–281  crossref  mathscinet  zmath  isi
21. Morrow M. T., An introduction to higher dimensional local fields and adeles, 2012, arXiv: 1204.0586
22. Oliver T. D., Automorphicity and mean-periodicity, 2013, arXiv: 1307.6706
23. Parshin A. N., “K arifmetike dvumernykh skhem. I. Raspredeleniya i vychety”, Izv. AN SSSR. Ser. mat., 40:4 (1976), 736–773  mathnet  mathscinet  zmath
24. Parshin A. N., “Chern classes, adeles and $L$-functions”, J. Reine Angew. Math., 341 (1983), 174–192  mathscinet  zmath  isi
25. Saito T., “Conductor, discriminant, and the Noether formula of arithmetic surfaces”, Duke Math. J., 57:1 (1988), 151–173  crossref  mathscinet  zmath  isi
26. Serre J. P., “Zeta and $L$-Functions”, Arithmetical Algebraic Geometry, Proc. Conf. (Purdue Univ., 1963), Harper & Row, New York, 1963, 82–92  mathscinet
27. Suzuki M., “Two dimensional adelic analysis and cuspidal automorphic representations of $GL(2)$”, Multiple Dirichlet Series, $L$-functions and Automorphic Forms, Progr. Math., 300, Birkhäuser, New York, 2012, 339–361  mathscinet  zmath
28. Tate J., Fourier analysis in number fields and Hecke's zeta functions, PhD thesis, Princeton Univ., 1950  mathscinet
29. Weil A., “Fonction zeta et distributions”, Seminaire Bourbaki, v. 9, Exp. No. 312, Soc. Math. France, Pasis, 523–531  mathscinet
30. Weil A., Basic number theory, Grundlehren Math. Wiss., 144, Third ed., Springer-Verlag, New York, 1974  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025