|
|
|
References
|
|
|
1. |
Beilinson A. A., “Vychety i adeli”, Funkts. anal. i ego pril., 14:1 (1980), 37–43 |
2. |
Bloch S., “de Rham cohomology and conductors of curves”, Duke Math. J., 54:2 (1987), 295–308 |
3. |
Bourbaki N., Elements of Mathematics. General Topology, Pt. I, II, Hermann, Paris, 1966 |
4. |
Brouw I. I., Wewers S., Computing $L$-functions and semistable reduction of superelliptic curves, 2012, arXiv: 1211.4459v1 |
5. |
Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 75–109 |
6. |
Fesenko I., Ricotta G., Suzuki M., “Mean-periodicity and zeta functions”, Ann. L'Inst. Fourier (Grenoble), 12:5 (2012), 1819–1887 |
7. |
Fesenko I. B., “Analysis on arithmetic schemes. I”, Doc. Math., 2003, Extra vol., 261–284 |
8. |
Fesenko I. B., “Mera. integrirovanie i elementy garmonicheskogo analiza na obobschennykh prostranstvakh petel”, Tr. S.-Peterburg. mat. o-va, 12, 2006, 179–199 |
9. |
Fesenko I. B., “Adelic approach to the zeta function of arithmetic schemes in dimension two”, Moscow Math. J., 8:2 (2008), 273–317 |
10. |
Fesenko I. B., “Analysis on arithmetic schemes. II”, J. $K$-theory, 5:3 (2010), 437–557 |
11. |
Fesenko I. B., Geometric adeles and the Riemann–Roch theorem for $1$-cycles on surfaces, Preprint 2012-36, Max Planck Inst. Math., Bonn |
12. |
Fesenko I. B., Kurihara M. (eds.), Invitation to higher local fields, Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000 |
13. |
Fesenko I. B., Vostokov S. V., Local fields and their extensions, 2nd ed., Amer. Math. Soc., Providence, RI, 2002 |
14. |
Hrushovski E., Kazhdan D., “Integration in valued fields”, Progr. Math., 253, Birkhäuser, Boston, 2006, 261–405 |
15. |
Huber A., “On the Parshin–Beilinson adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273 |
16. |
Kim H. H., Lee K.-H., “Spherical Hecke algebras of $SL2$ over $2$-dimensional local fields”, Amer. J. Math., 126:6 (2004), 1381–1399 |
17. |
Liu Q., Algebraic geometry and arithmetic curves, Oxford Grad. Texts Math., 6, Oxford Univ. Press, Oxford, 2002 |
18. |
Meyer R., “On a representation of the idele class group related to primes and zeros of $L$-functions”, Duke Math. J., 127:3 (2005), 519–595 |
19. |
Morrow M. T., Fubini's theorem and non-linear change of variables over a two-dimensional local field, 2007, arXiv: 0712.2177v3 |
20. |
Morrow M. T., “Integration on valuation fields over local fields”, Tokyo J. Math., 33:1 (2010), 235–281 |
21. |
Morrow M. T., An introduction to higher dimensional local fields and adeles, 2012, arXiv: 1204.0586 |
22. |
Oliver T. D., Automorphicity and mean-periodicity, 2013, arXiv: 1307.6706 |
23. |
Parshin A. N., “K arifmetike dvumernykh skhem. I. Raspredeleniya i vychety”, Izv. AN SSSR. Ser. mat., 40:4 (1976), 736–773 |
24. |
Parshin A. N., “Chern classes, adeles and $L$-functions”, J. Reine Angew. Math., 341 (1983), 174–192 |
25. |
Saito T., “Conductor, discriminant, and the Noether formula of arithmetic surfaces”, Duke Math. J., 57:1 (1988), 151–173 |
26. |
Serre J. P., “Zeta and $L$-Functions”, Arithmetical Algebraic Geometry, Proc. Conf. (Purdue Univ., 1963), Harper & Row, New York, 1963, 82–92 |
27. |
Suzuki M., “Two dimensional adelic analysis and cuspidal automorphic representations of $GL(2)$”, Multiple Dirichlet Series, $L$-functions and Automorphic Forms, Progr. Math., 300, Birkhäuser, New York, 2012, 339–361 |
28. |
Tate J., Fourier analysis in number fields and Hecke's zeta functions, PhD thesis, Princeton Univ., 1950 |
29. |
Weil A., “Fonction zeta et distributions”, Seminaire Bourbaki, v. 9, Exp. No. 312, Soc. Math. France, Pasis, 523–531 |
30. |
Weil A., Basic number theory, Grundlehren Math. Wiss., 144, Third ed., Springer-Verlag, New York, 1974 |