RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 2015, Volume 27, Issue 6, Pages 242–259 (Mi aa1475)

Supercharacter theory for groups of invertible elements of reduced algebras
A. N. Panov

References

1. André C. A. M., “Basic sums of coadjoint orbits of the unitriangular group”, J. Algebra, 176:3 (1995), 959–1000  crossref  mathscinet  zmath  isi
2. André C. A. M., “Basic character table of the unitriangular group”, J. Algebra, 241:1 (2001), 437–471  crossref  mathscinet  zmath  isi
3. André C. A. M., “Hecke algebras for the basic characters of the unitriangular group”, Proc. Amer. Math. Soc., 132:4 (2004), 987–996  crossref  mathscinet  zmath  isi
4. Diaconis P., Isaacs I. M., “Supercharacters and superclasses for algebra groups”, Trans. Amer. Math. Soc., 360:5 (2008), 2359–2392  crossref  mathscinet  zmath  isi
5. Ning Yan, Representation theory of finite unipotent linear groups, Dissertation, 2001, arXiv: 1004.2674  mathscinet
6. Aguiar M. etc., “Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras”, Adv. Math., 229:4 (2012), 2310–2337  crossref  mathscinet  zmath  isi
7. Hendrickson A. O. F., “Supercharacter theory costructions corresponding to Schur ring products”, Comm. Algebra, 40:12 (2012), 4420–4438  crossref  mathscinet  zmath  isi  elib
8. Andrews S., Supercharacter theory constructed by the method of little groups, 2014, arXiv: 1405.5479
9. Lang A., Supercharacter theories and semidirect products, 2014, arXiv: 1405.1764
10. Pirs P., Assotsiativnye algebry, Mir, M., 1986  mathscinet
11. Drozd Yu. N., Kirichenko V. V., Konechnomernye algebry, Vischa shkola, Kiev, 1980  mathscinet
12. Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969  mathscinet
13. Serre J.-P., Linear representations of finite groups, Grad. Texts in Math., 42, Springer-Verlag, New York, 1977  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025