|
|
|
Список литературы
|
|
|
1. |
Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Stat. Inst., Calcutta, 1981 |
2. |
Billingsley P., Convergence of probability measures, John Wiley & Sons, Inc., New York, 1968 |
3. |
Dubickas A., Laurinčikas A., “Distribution modulo 1 and the discrete universality of the Riemann zeta-function”, Abh. Math. Semin. Univ. Hambg., 86:1 (2016), 79–87 |
4. |
Gonek S. M., Analytic properties of zeta and $L$-functions, Ph. D. Thesis, Univ. Michigan, 1979 |
5. |
Kuipers L., Niederreiter H., Uniform distribution of sequences, Pure Appl. Math., Wiley-Intersci., New York, 1974 |
6. |
Laurinčikas A., Limit theorems for the Riemann zeta-function, Math. Appl., 352, Kluwer. Acad. Publ., Dordrecht, 1996 |
7. |
Мергелян С. Н., “Равномерные приближения функций комплексного переменного”, Успехи мат. наук, 7:2 (1952), 31–122 |
8. |
Montgomery H. L, Topics in multiplicative number theory, Lecture Notes in Math., 227, Springer-Verlag, Berlin, 1971 |
9. |
Reich A., “Werteverteilung von Zetafunktionen”, Arch. Math. (Basel), 34:5 (1980), 440–451 |
10. |
Steuding J., Value-distribution of $L$-functions, Lecture Notes in Math., 1877, Springer, Berlin, 2007 |
11. |
Воронин С. М., “Теорема об “универсальности” дзета-функций Римана”, Изв. АН СССР. Сер. мат., 39:3 (1975), 475–486 |
12. |
Walsh J. L., Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., 20, Amer. Math. Soc., Providence, RI, 1965 |