RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ

Алгебра и анализ, 2018, том 30, выпуск 3, страницы 55–65 (Mi aa1594)

Radial and logarithmic refinements of Hardy's inequality
F. Gesztesy, L. L. Littlejohn, I. Michael, M. M. H. Pang

Список литературы

1. Adimurthi, Grossi M., Santra S., “Optimal Hardy–Rellich inequalities, maximum principle and related eigenvalue problem”, J. Funct. Anal., 240:1 (2006), 36–83  crossref  mathscinet  zmath
2. Balinsky A., Evans W. D., Spectral analysis of relativistic operators, Imperial College Press, London, 2011  mathscinet
3. Balinsky A. A., Evans W. D., Lewis R. T., The analysis and geometry of Hardy's inequality, Universitext, Springer, Cham, 2015  crossref  mathscinet  zmath
4. Cycon H. L., Froese R. G., Kirsch W., Simon B., Schrödinger operators with applications to quantum mechanics and global geometry, Texts Monogr. Phys., Springer, Berlin, 1987  mathscinet
5. Faris W. G., “Weak Lebesgue spaces and quantum mechanical binding”, Duke Math. J., 43:2 (1976), 365–373  crossref  mathscinet  zmath
6. Gesztesy F., “On non-degenerate ground states for Schrödinger operators”, Rep. Math. Phys., 20:1 (1984), 93–109  crossref  mathscinet  zmath  adsnasa
7. Gesztesy F., Littlejohn L. L., “Factorizations and Hardy–Rellich-type inequalities”, Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis, The Helge Holden Anniversary Volume, EMS Congress Reports, eds. Gesztesy F., Hanche-Olsen H., Jakobsen E., Lyubarskii Y., Risebro N., Seip K. (to appear); arXiv: 1701.08929
8. Gesztesy F., Littlejohn L. L., Michael I., Pang M., In preparation
9. Gesztesy F., Mitrea M., Nenciu I., Teschl G., “Decoupling of deficiency indices and applications to Schrödinger-type operators with possibly strongly singular potentials”, Adv. Math., 301 (2016), 1022–1061  crossref  mathscinet  zmath  elib
10. Gesztesy F., Pittner L. L., “A generalization of the virial theorem for strongly singular potentials”, Rep. Math. Phys., 18:2 (1980), 149–162  crossref  mathscinet  zmath  adsnasa
11. Gesztesy F., Ünal M., “Perturbative oscillation criteria and Hardy-type inequalities”, Math. Nachr., 189 (1998), 121–144  crossref  mathscinet  zmath
12. Kalf H., “On the characterization of the Friedrichs extension of ordinary or elliptic differential operators with a strongly singular potential”, J. Funct. Anal., 10 (1972), 230–250  crossref  mathscinet  zmath
13. Kalf H., Schmincke U.-W., Walter J., Wüst R., “On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials”, Spectral Theory and Differential Equations, Lecture Notes in Math., 448, Springer, Berlin, 1975, 182–226  crossref  mathscinet
14. Kalf H., Walter J., “Strongly singular potentials and essential self-adjointness of singular elliptic operators in $C_0^\infty(\mathbb R^n\setminus\{0\})$”, J. Funct. Anal., 10 (1972), 114–130  crossref  mathscinet  zmath
15. Kufner A., Maligranda L., Persson L.-E., The Hardy inequality. About its history and some related results, Vydavatelský Servis, Pilsen, 2007  mathscinet  zmath
16. Kufner A., Persson L.-E., Samko N., Weighted inequalities of Hardy type, 2nd ed., World Sci. Publ. Co., Singapore 2017  mathscinet  zmath
17. Opic B., Kufner A., Hardy-type inequalities, Pitman Res. Notes Math. Ser., 219, Longman Sci. & Technical, Harlow, 1990  mathscinet  zmath
18. Ruzhansky M., Yessirkegenov N., Factorizations and Hardy–Rellich inequalities on stratified groups, arXiv: 1706.05108
19. Tertikas A., Zographopoulos N. B., “Best constants in the Hardy–Rellich inequalities and related improvements”, Adv. Math., 209:2 (2007), 407–459  crossref  mathscinet  zmath


© МИАН, 2025