|
|
|
Список литературы
|
|
|
1. |
Bach V., “Error bound for the Hartree–Fock energy of atoms and molecules”, Comm. Math. Phys., 147:3 (1992), 527–548 |
2. |
Daubechies I., “An uncertainty principle for fermions with generalized kinetic energy”, Comm. Math. Phys., 90:4 (1983), 511–520 |
3. |
Erdös L., Fournais S., Solovej J. P., “Scott correction for large atoms and molecules in a self-generated magnetic field”, Comm. Math. Phys., 312:3 (2012), 847–882 |
4. |
Erdös L., Fournais S., Solovej J. P., “Relativistic Scott correction in self-generated magnetic fields”, J. Math. Phys., 53 (2012), 095202 |
5. |
Frank R. L., Lieb E. H., Seiringer R., “Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators”, J. Amer. Math. Soc., 21:4 (2008), 925–950 |
6. |
Frank R. L., Siedentop H., Warzel S., “The ground state energy of heavy atoms: relativistic lowering of the leading energy correction”, Comm. Math. Phys., 278:2 (2008), 549–566 |
7. |
Graf G. M., Solovej J. P., “A correlation estimate with applications to quantum systems with Coulomb interactions”, Rev. Math. Phys., 6:5a (1994), 977–997 ; Adv. Ser. Math. Phys., 20, World Sci., Singapure, 1994, 142–166 |
8. |
Herbst I. W., “Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$”, Comm. Math. Phys., 53:3 (1977), 285–294 |
9. |
Ivrii V., Microlocal analysis, sharp spectral asymptotics and applications, http://www.math.toronto.edu/ivrii/monsterbook.pdf |
10. |
Ivrii V., Asymptotics of the ground state energy in the relativistic settings and with self-generated magnetic field, arXiv: 1708.07737 |
11. |
Lieb E. H., Thirring W. E., “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Essays Honor Valentine Bargmann, Stud. Math. Phys., Princeton Univ. Press, Princeton, NJ, 1976, 269–303 |
12. |
Lieb E. H., Yau H. T., “The stability and instability of relativistic matter”, Comm. Math. Phys., 118:2 (1988), 177–213 |
13. |
Solovej J. P., Sørensen T. Ø., Spitzer W. L., “The relativistic Scott correction for atoms and molecules”, Comm. Pure Appl. Math., 63:1 (2010), 9–118 |