RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 2018, Volume 30, Issue 3, Pages 112–128 (Mi aa1598)

A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity
V. Kozlov, N. G. Kuznetsov

References

1. Appell J., Zabrejko P. P., Nonlinear superposition operators, Cambridge Tracts Math., 95, Cambridge Univ. Press, Cambridge, 1990  mathscinet  zmath
2. Carathéodory K., Vorlesungen über reelle Funktionen, Chelsea Pub. Co., New York, 1948  mathscinet
3. Constantin A., Strauss W., “Exact steady periodic water waves with vorticity”, Comm. Pure Appl. Math., 57:4 (2004), 481–527  crossref  mathscinet  zmath
4. Constantin A., Strauss W., “Periodic traveling gravity water waves with discontinuous vorticity”, Arch. Ration. Mech. Anal., 202:1 (2011), 133–175  crossref  mathscinet  zmath
5. Constantin A., Strauss W., Varvaruca E., “Global bifurcation of steady gravity water waves with critical layers”, Acta Math., 217:2 (2016), 195–262  crossref  mathscinet  zmath
6. Dubreil-Jacotin M.-L., “Sur la détermination rigoureuse des ondes permanentes peŕiodiques d'ampleur finie”, J. Math. Pures Appl., 13 (1934), 217–291  mathscinet  zmath
7. Gidas B., Ni W.-M., Nirenberg L., “Symmetry and related properties via the maximum principle”, Comm. Math. Phys., 68:3 (1979), 209–243  crossref  mathscinet  zmath  adsnasa
8. Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983  mathscinet  zmath
9. Keller J. B., “On solutions of $\Delta u=f(u)$”, Comm. Pure Appl. Math., 10 (1957), 503–510  crossref  mathscinet  zmath
10. Kozlov V., Kuznetsov N., “Steady free-surface vortical flows parallel to the horizontal bottom”, Quart. J. Mech. Appl. Math., 64:3 (2011), 371–399  crossref  mathscinet  zmath  elib
11. Kozlov V., Kuznetsov N., “Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents”, Arch. Ration. Mech. Anal., 214:3 (2014), 971–1018  crossref  mathscinet  zmath  elib
12. Kozlov V., Kuznetsov N., “Bounds for solutions to the problem of steady water waves with vorticity”, Quart. J. Mech. Appl. Math., 70:4 (2017), 497–518  crossref  mathscinet
13. Kozlov V., Kuznetsov N., Lokharu E., “On bounds and non-existence in the problem of steady waves with vorticity”, J. Fluid Mech., 765 (2015), R1, 13 pp.  crossref  mathscinet  zmath  elib
14. Kozlov V., Kuznetsov N., Lokharu E., “On the Benjamin–Lighthill conjecture for water waves with vorticity”, J. Fluid Mech., 825 (2017), 961–1001  crossref  mathscinet  zmath  adsnasa  elib
15. Kurata K., “Continuity and Harnack's inequality for solutions of elliptic partial differential equations of second order”, Indiana Univ. Math. J., 43:2 (1994), 411–440  crossref  mathscinet  zmath
16. Lavrentev M., Shabat V., Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1977  mathscinet
17. Martin C. I., Matioc B.-V., “Steady periodic water waves with unbounded vorticity: equivalent formulations and existence results”, J. Nonlinear Sci., 24:4 (2014), 633–659  crossref  mathscinet  zmath  adsnasa
18. Osserman R., “On the inequality $\Delta u\geq f(u)$”, Pacific J. Math., 7 (1957), 1641–1647  crossref  mathscinet  zmath
19. Strauss W., “Steady water waves”, Bull. Amer. Math. Soc., 47:4 (2010), 671–694  crossref  mathscinet  zmath  elib
20. Sabina de Lis J. C., “Hopf maximum principle revisited”, Electron. J. Diffential Equations, 2015 (2015), No. 115, 9 pp.  mathscinet
21. Trudinger N. S., “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. Pure Appl. Math., 20 (1967), 721–747  crossref  mathscinet  zmath
22. Vanden-Broeck J.-M., “Periodic waves with constant vorticity in water of infinite depth”, IMA J. Appl. Math., 56 (1996), 207–217  crossref  zmath


© Steklov Math. Inst. of RAS, 2025