|
|
|
References
|
|
|
1. |
Appell J., Zabrejko P. P., Nonlinear superposition operators, Cambridge Tracts Math., 95, Cambridge Univ. Press, Cambridge, 1990 |
2. |
Carathéodory K., Vorlesungen über reelle Funktionen, Chelsea Pub. Co., New York, 1948 |
3. |
Constantin A., Strauss W., “Exact steady periodic water waves with vorticity”, Comm. Pure Appl. Math., 57:4 (2004), 481–527 |
4. |
Constantin A., Strauss W., “Periodic traveling gravity water waves with discontinuous vorticity”, Arch. Ration. Mech. Anal., 202:1 (2011), 133–175 |
5. |
Constantin A., Strauss W., Varvaruca E., “Global bifurcation of steady gravity water waves with critical layers”, Acta Math., 217:2 (2016), 195–262 |
6. |
Dubreil-Jacotin M.-L., “Sur la détermination rigoureuse des ondes permanentes peŕiodiques d'ampleur finie”, J. Math. Pures Appl., 13 (1934), 217–291 |
7. |
Gidas B., Ni W.-M., Nirenberg L., “Symmetry and related properties via the maximum principle”, Comm. Math. Phys., 68:3 (1979), 209–243 |
8. |
Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 |
9. |
Keller J. B., “On solutions of $\Delta u=f(u)$”, Comm. Pure Appl. Math., 10 (1957), 503–510 |
10. |
Kozlov V., Kuznetsov N., “Steady free-surface vortical flows parallel to the horizontal bottom”, Quart. J. Mech. Appl. Math., 64:3 (2011), 371–399 |
11. |
Kozlov V., Kuznetsov N., “Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents”, Arch. Ration. Mech. Anal., 214:3 (2014), 971–1018 |
12. |
Kozlov V., Kuznetsov N., “Bounds for solutions to the problem of steady water waves with vorticity”, Quart. J. Mech. Appl. Math., 70:4 (2017), 497–518 |
13. |
Kozlov V., Kuznetsov N., Lokharu E., “On bounds and non-existence in the problem of steady waves with vorticity”, J. Fluid Mech., 765 (2015), R1, 13 pp. |
14. |
Kozlov V., Kuznetsov N., Lokharu E., “On the Benjamin–Lighthill conjecture for water waves with vorticity”, J. Fluid Mech., 825 (2017), 961–1001 |
15. |
Kurata K., “Continuity and Harnack's inequality for solutions of elliptic partial differential equations of second order”, Indiana Univ. Math. J., 43:2 (1994), 411–440 |
16. |
Lavrentev M., Shabat V., Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1977 |
17. |
Martin C. I., Matioc B.-V., “Steady periodic water waves with unbounded vorticity: equivalent formulations and existence results”, J. Nonlinear Sci., 24:4 (2014), 633–659 |
18. |
Osserman R., “On the inequality $\Delta u\geq f(u)$”, Pacific J. Math., 7 (1957), 1641–1647 |
19. |
Strauss W., “Steady water waves”, Bull. Amer. Math. Soc., 47:4 (2010), 671–694 |
20. |
Sabina de Lis J. C., “Hopf maximum principle revisited”, Electron. J. Diffential Equations, 2015 (2015), No. 115, 9 pp. |
21. |
Trudinger N. S., “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. Pure Appl. Math., 20 (1967), 721–747 |
22. |
Vanden-Broeck J.-M., “Periodic waves with constant vorticity in water of infinite depth”, IMA J. Appl. Math., 56 (1996), 207–217 |