RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 2018, Volume 30, Issue 3, Pages 140–168 (Mi aa1600)

On some properties of the time evolution of quadratic open quantum systems
D. Robert

References

1. Agarwal G. S., “Entropy, the wigner distribution function, and the approach to equilibrium of a system of coupled harmonic oscillators”, Phys. Rev. A, 3 (1971), 828–831  crossref  adsnasa
2. Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, VINITI, M., 1985  mathscinet
3. Berezin F. A., Shubin M. A., Uravneniya Shrëdingera, MGU, M., 1983
4. Bhatia R., Matrix analysis, Grad. Texts in Math., 169, Springer, New York, 1997  crossref  mathscinet
5. Breuer H. P., Petruccione F., The theory of open quantum systems, Oxford Univ. Press, New York, 2002  mathscinet  zmath
6. Blume-Kohout R., Zurek W. H., “Decoherence form chaotic environment: an upside down “oscillator” as a model”, Phys. Rev. A, 68 (2003), 032104  crossref  mathscinet  adsnasa
7. Caldeira A. O., Leggett A. J., “Influence of damping on quantum interference: An exactly soluble model”, Phys. Rev. A, 31 (1985), 1059–1066  crossref  adsnasa
8. Combescure M., Robert D., Coherent states and applications in mathematical physics, Springer-Verlag, Dordreht, 2012  mathscinet  zmath
9. Davies E. B., Quantum theory of open systems, Acad. Press, London, 1976  mathscinet  zmath
10. Dodonov V. V., Man'ko O. V., Man'ko V. I., “Quantum non-stationary oscillators: models and applications”, J. Russian Laser Research, 16:1 (1995), 1–56  crossref
11. Dodonov V. V., “Parametric excitation and generation of nonclassical states in linear media”, Theory of Non classical States of Light, Taylor & Francis, London, 2003, 153–218
12. Eisert J., Plenio M. B., “Quantum and classical correlations in quantum brownian motion”, Phys. Rev. Lett., 89:13 (2002), 137902  crossref  mathscinet  zmath  adsnasa
13. Feynman R. P., Vernon F. L., “The theory of a general quantum system interacting with a linear dissipative system”, Ann. Phys., 24 (1963), 118–173  crossref  mathscinet  adsnasa
14. Fleming C. H., Hu B. L., Roura A., “Exact analytical solutions to the master equation of Brownian motion for a general environment”, Ann. Phys., 326:5 (2011), 1207–1258  crossref  mathscinet  zmath  adsnasa  elib
15. Folland G., Harmonic analysis in phase space, Ann. Math. Stud., 122, Princeton Univ. Press, Princeton, 1989  mathscinet  zmath
16. Ford G. W., Kac M., “On the quantum Langevin equation”, J. Statist. Phys., 46:5–6 (1987), 803–810  crossref  mathscinet  zmath  adsnasa
17. Ford G. W., Kac M., Mazur P., “Statistical mechanics of assemblies of coupled oscillators”, J. Math. Phys., 6 (1965), 504–515  crossref  mathscinet  zmath  adsnasa
18. Ford G. W., O'Connell R. F., “Exact solution of the Hu–Paz–Zhang master equation”, Phys. Rev. D, 64 (2001), 105020  crossref  mathscinet  adsnasa
19. Gokhberg I., Krein M. G.,, Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965  mathscinet
20. Halliwell J. J., Yu T., “Alternative derivation of the Hu–Paz–Zhang master equation of quantum Brownian motion”, Phys. Rev. D, 53:4 (1966), 2012–2019  crossref  mathscinet  adsnasa
21. Gerschgorin S., “Über die Abgrenzung der Eigenwerte einer Matrix”, Izv. AN SSSR. Ser. mat., 1931, no. 6, 749–754  mathnet  zmath
22. Hörmander L., “Symplectic classification of quadratic forms, and general Mehler formulas”, Math. Z., 219:3 (1995), 413–449  crossref  mathscinet  zmath
23. Horodecki M., Horodecki P., Horodecki R., “Separability of mixed states: necessary and sufficient conditions”, Phys. Lett. A, 223:1–2 (1966), 1–8  mathscinet  adsnasa
24. Hu B. L., Paz J. P., Zhang Y., “Quantum Brownian motion in a general environment: exact master equation with nonlocal dissipation and colored noise”, Phys. Rev. D, 45:8 (1992), 2843–2861  crossref  mathscinet  zmath  adsnasa
25. Joos E., Zeh H. D., “The emergence of classical properties through interaction with the environment”, Z. Phys. B Condensed Matter, 59 (1985), 223–243  crossref  adsnasa
26. Hornberger K., “Introduction to decoherence, entangement and decoherence”, Lecture Notes in Phys., 768, Springer, Berlin, 2009, 221–276  crossref  mathscinet  zmath
27. Maspero A., Robert D., “On time dependent Schrödinger eqiations: global well-posedness and growth of Sobolev norms”, J. Funct. Anal., 273:2 (2017), 721–781  crossref  mathscinet  zmath
28. Nielsen M. A., Chuang I. L., Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000  mathscinet  zmath
29. Robert D., Time evolution of states for open quantum systems. The quadratic case, 2012, arXiv: 1208.1598v2[math-ph]
30. Schlosshauer M., Decoherence and the quantum-to-classical transition, Springer-Verlag, Heidelberg, 2007  mathscinet  adsnasa
31. Simon R., Chaturvedi S., Srinivasan V., “Congruences and canonical forms for a positive matrix: application to Schweinler–Wigner extremum principle”, J. Math. Phys., 40:7 (1999), 3632–3643  crossref  mathscinet  adsnasa
32. Simon R., Susarshan E. C. G., Mukada N., “Gaussian–Wigner distributions: a complete characterization”, Phys. Lett. A, 124:4–5 (1987), 223–228  crossref  mathscinet  adsnasa
33. Simon R., “Peres–Horodecki separability criterion for continuous variable systems”, Phys. Rev. Lett., 84:12 (2000), 2726–2729  crossref  mathscinet  adsnasa
34. Schrödinger E., “Discussion of probability Relations between Separated Systems”, Proc. Cambridge Philos. Soc., 31 (1935), 555–563  crossref  zmath  adsnasa
35. Werner R. F., Wolf M. M., “Bound entangled Gaussian states”, Phys. Rev. Lett., 86:16 (2001), 3658–3661  crossref  adsnasa
36. Williamson J., “On algebraic problem concerning the normal forms of linear dynamical systems”, Amer. J. Math., 58:1 (1936), 141–163  crossref  mathscinet
37. Zurek W. H., “Pointer basis of quantum apparatus: into what mixture does the wave packet collapse”, Phys. Rev. D, 24:6 (1981), 1516–1525  crossref  mathscinet  adsnasa


© Steklov Math. Inst. of RAS, 2025