|
|
|
References
|
|
|
1. |
Birman M. Sh., Solomyak M. Z., “Asimptotika spektra slabo polyarnykh integralnykh operatorov”, Izv. AN SSSR. Ser. mat., 34:5 (1970), 1142–1158 |
2. |
Birman M. Sh., Solomyak M. Z., “Spektralnaya asimptotika negladkikh ellipticheskikh operatorov. I”, Tr. Mosk. mat. o-va, 27, 1972, 3–52 ; “II”, Тр. Моск. мат. о-ва, 28, 1973, 3–34 |
3. |
Birman M. Sh., Solomyak M. Z., “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno-odnorodnymi simvolami. I”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1977, no. 3, 13–21 ; “II”, Вестн. Ленингр. ун-та. Сер. мат., мех., астроном., 1979, № 3, 5–10 |
4. |
Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 |
5. |
Erdelyi A., “General asymptotic expansions of Laplace integrals”, Arch. Rational Mech. Anal., 7:1 (1961), 1–20 |
6. |
Glover K., Lam J., Partington J. R., “Rational approximation of a class of infinite-dimensional systems. I. Singular values of Hankel operators”, Math. Control Signals Systems, 3:4 (1990), 325–344 |
7. |
Nikolski N. K., Operators, functions, and systems: an easy reading, v. I, Math. Surv. Monogr., 92, Hardy, Hankel, and Toeplitz, Amer. Math. Soc., Providence, RI, 2002 |
8. |
Peller V. V., Hankel operators and their applications, Springer Monogr. Math., Springer-Verlag, New York, 2003 |
9. |
Pushnitski A., Yafaev D., “Sharp estimates for singular values of Hankel operators”, Integral Equations Operator Theory, 83:3 (2015), 393-411 |
10. |
Pushnitski A., Yafaev D., “Asymptotic behavior of eigenvalues of Hankel operators”, Int. Math. Res. Not. IMRN, 2015:22 (2015), 11861–11886 |
11. |
Pushnitski A., Yafaev D., “Localization principle for compact Hankel operators”, J. Funct. Anal., 270:9 (2016), 3591–3621 |
12. |
Pushnitski A., Yafaev D., “Spectral asymptotics for compact selfadjoint Hankel operators”, J. Spectr. Theory, 6:4 (2016), 921–953 |
13. |
Pushnitski A., Yafaev D., “Best rational approximation of functions with logarithmic singularities”, Constr. Approx., 46:2 (2017), 243–269 |
14. |
Widom H., “Hankel matrices”, Trans. Amer. Math. Soc., 121 (1966), 1–35 |
15. |
Yafaev D. R., “Diagonalizations of two classes of unbounded Hankel operators”, Bull. Math. Sci., 4:2 (2014), 175–198 |
16. |
Yafaev D. R., “Criteria for Hankel operators to be sign-definite”, Anal. PDE, 8:1 (2015), 183–221 |
17. |
Yafaev D. R., “On finite rank Hankel operators”, J. Funct. Anal., 268:7 (2015), 1808–1839 |
18. |
Yafaev D. R., “Quasi-Carleman operators and their spectral properties”, Integral Equations Operator Theory, 81:4 (2015), 499–534 |
19. |
Yafaev D. R., “Quasi-diagonalization of Hankel operators”, J. Anal. Math., 29 (2017), 133–182 |
20. |
Yafaev D. R., “Spectral and scattering theory for differential and Hankel operator”, Adv. Math., 308 (2017), 713–766 |