RUS  ENG
Full version
JOURNALS // Algebra i Analiz

Algebra i Analiz, 2018, Volume 30, Issue 3, Pages 286–310 (Mi aa1605)

A new representation of Hankel operators and its spectral consequences
D. R. Yafaev

References

1. Birman M. Sh., Solomyak M. Z., “Asimptotika spektra slabo polyarnykh integralnykh operatorov”, Izv. AN SSSR. Ser. mat., 34:5 (1970), 1142–1158  mathnet  mathscinet  zmath
2. Birman M. Sh., Solomyak M. Z., “Spektralnaya asimptotika negladkikh ellipticheskikh operatorov. I”, Tr. Mosk. mat. o-va, 27, 1972, 3–52  mathnet  mathscinet  zmath; “II”, Тр. Моск. мат. о-ва, 28, 1973, 3–34  mathnet  mathscinet  zmath
3. Birman M. Sh., Solomyak M. Z., “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno-odnorodnymi simvolami. I”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1977, no. 3, 13–21  zmath; “II”, Вестн. Ленингр. ун-та. Сер. мат., мех., астроном., 1979, № 3, 5–10  zmath
4. Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980  mathscinet
5. Erdelyi A., “General asymptotic expansions of Laplace integrals”, Arch. Rational Mech. Anal., 7:1 (1961), 1–20  crossref  mathscinet  zmath  adsnasa
6. Glover K., Lam J., Partington J. R., “Rational approximation of a class of infinite-dimensional systems. I. Singular values of Hankel operators”, Math. Control Signals Systems, 3:4 (1990), 325–344  crossref  mathscinet  zmath
7. Nikolski N. K., Operators, functions, and systems: an easy reading, v. I, Math. Surv. Monogr., 92, Hardy, Hankel, and Toeplitz, Amer. Math. Soc., Providence, RI, 2002  mathscinet  zmath
8. Peller V. V., Hankel operators and their applications, Springer Monogr. Math., Springer-Verlag, New York, 2003  crossref  mathscinet  zmath
9. Pushnitski A., Yafaev D., “Sharp estimates for singular values of Hankel operators”, Integral Equations Operator Theory, 83:3 (2015), 393-411  crossref  mathscinet  zmath  elib
10. Pushnitski A., Yafaev D., “Asymptotic behavior of eigenvalues of Hankel operators”, Int. Math. Res. Not. IMRN, 2015:22 (2015), 11861–11886  mathscinet  zmath
11. Pushnitski A., Yafaev D., “Localization principle for compact Hankel operators”, J. Funct. Anal., 270:9 (2016), 3591–3621  crossref  mathscinet  zmath
12. Pushnitski A., Yafaev D., “Spectral asymptotics for compact selfadjoint Hankel operators”, J. Spectr. Theory, 6:4 (2016), 921–953  crossref  mathscinet  zmath
13. Pushnitski A., Yafaev D., “Best rational approximation of functions with logarithmic singularities”, Constr. Approx., 46:2 (2017), 243–269  crossref  mathscinet  zmath  elib
14. Widom H., “Hankel matrices”, Trans. Amer. Math. Soc., 121 (1966), 1–35  crossref  mathscinet  zmath
15. Yafaev D. R., “Diagonalizations of two classes of unbounded Hankel operators”, Bull. Math. Sci., 4:2 (2014), 175–198  crossref  mathscinet  zmath
16. Yafaev D. R., “Criteria for Hankel operators to be sign-definite”, Anal. PDE, 8:1 (2015), 183–221  crossref  mathscinet  zmath
17. Yafaev D. R., “On finite rank Hankel operators”, J. Funct. Anal., 268:7 (2015), 1808–1839  crossref  mathscinet  zmath
18. Yafaev D. R., “Quasi-Carleman operators and their spectral properties”, Integral Equations Operator Theory, 81:4 (2015), 499–534  crossref  mathscinet  zmath  elib
19. Yafaev D. R., “Quasi-diagonalization of Hankel operators”, J. Anal. Math., 29 (2017), 133–182  crossref  mathscinet
20. Yafaev D. R., “Spectral and scattering theory for differential and Hankel operator”, Adv. Math., 308 (2017), 713–766  crossref  mathscinet  zmath  elib


© Steklov Math. Inst. of RAS, 2025