|
|
|
Список литературы
|
|
|
1. |
Alama S., Deift P. A., Hempel R., “Eigenvalue branches of the Schrödinger operator $H-\lambda W$ in a gap of $\sigma (H)$”, Commun. Math. Phys., 121 (1989), 291–321 |
2. |
Ando K., Isozaki H., Morioka H., “Spectral properties of Schrödinger operators on perturbed lattices”, Ann. Henri Poincaré, 17:8 (2016), 2103–2171 |
3. |
Boutet de Monvel A., Sahbani J., “On the spectral properties of discrete Schrödinger operators: (the multidimensional case)”, Rev. Math. Phys., 11:9 (1999), 1061–1078 |
4. |
Bach V., de Siqueira Pedra W., Lakaev S. N., “Bounds on the discrete spectrum of lattice Schrödinger operators”, J. Math. Phys., 59:2 (2018), 022109 |
5. |
Бирман М. Ш., “Дискретный спектр периодического оператора Шрёдингера возмущенного убывающим потенциалом”, Алгебра и анализ, 8:1 (1996), 3–20 |
6. |
Бирман М. Ш., Соломяк М. З., “Оценки сингулярных чисел интегральных операторов”, Успехи мат. наук, 32:1 (1977), 17–84 |
7. |
Бирман М. Ш., Соломяк М. З., “Асимптотика спектра псевдодифференциальных операторов с анизотропно однородными символами”, Вестн. Ленингр. ун-та. Cер. мат., мех., астроном., 1977, № 3, 13–21 |
8. |
Бирман М. Ш., Соломяк М. З., “Асимптотика спектра псевдодифференциальных операторов с анизотропно однородными символами”, Вестн. Ленингр. ун-та. Cер. мат., мех., астроном., 1979, № 3, 5–10 |
9. |
Бирман М. Ш., Соломяк М. З., “Компактные операторы со степенной асимптотикой сингулярных чисел”, Зап. науч. семин. ЛОМИ, 126, 1983, 21–30 |
10. |
Бирман М. Ш., Соломяк М. З., Спектральная теория самосопряженных операторов в гильбертовом пространстве, Учеб. пособ., 2-е изд., испр. и доп., Лань, СПб., 2010 |
11. |
Birman M. Sh., “Discrete spectrum in the gaps of a continuous one for perturbation with large coupling constant”, Estimates and Asimptotics for Discrete Spectra of Integral and Differential Equations (Leningrad, 1989–90), Adv. Soviet Math., 7, Amer. Math. Soc., Providence, RI, 1991, 57–73 |
12. |
Birman M. Sh., “Discrete spectrum of the periodic Schrödinger operator for non-negative perturbations”, Mathematical Results in Quantum Mechanics (Blossin, 1993), Oper. Theory Adv. Appl., 70, Birkhauser, Basel, 1994, 3–7 |
13. |
Birman M. Sh., “The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations”, Boundary Value Problems, Schrödinger Operators, Deformation Quantization, Math. Top., 8, Akad. Verlag, Berlin, 1995, 334–352 |
14. |
Birman M. Sh., Karadzhov G. E., Solomyak M. Z., “Boundedness conditions and spectrum estimates for the operators $b(X)a(D)$ and their analogs”, Estimates and Asimptotics for Discrete Spectra of Integral and Differential Equations (Leningrad, 1989–90), Adv. Soviet Math., 7, Amer. Math. Soc., Providence, RI, 1991, 85–106 |
15. |
Birman M. Sh., Sloushch V. A., “Discrete spectrum of the periodic Schrödinger operator with a variable metric perturbed by a nonnegative potential”, Math. Model. Nat. Phenom., 5:4 (2010), 32–53 |
16. |
Birman M. S., Solomyak M. Z., “Negative discrete spectrum of the Schrödinger operator with large coupling constant: a qualitative discussion”, Order, Disorder and Chaos in Quantum Systems (Dubna, 1989), Oper. Theory Adv. Appl., 46, Birkhauser, Basel, 1990, 3–16 |
17. |
Birman M. S., Solomyak M. Z., “Schrödinger operator. Estimates for bounds states as functional-theiretical problem”, Spectral Theory of Operators (Novgorod, 1989), Amer. Math. Soc. Transl. Ser. 2, 150, Amer. Math. Soc., Providence, RI, 1992, 1–54 |
18. |
Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A., “The electronic properties of graphene”, Rev. Mod. Phys., 81 (2009), 109–162 |
19. |
Cattaneo C., “The spectrum of the continuous Laplacian on a graph”, Monatsh. Math., 124:3 (1997), 215–235 |
20. |
Chung F., Spectral graph theory, CBMS Reg. Conf. Ser. Math., 92, Amer. Math. Soc., Providence, RI, 1997 |
21. |
Cwikel M., “Weak type estimates for singular values and the number of bound states of Schrödinger operators”, Ann. of Math. (2), 106:1 (1977), 93–100 |
22. |
Hayashi Y., Higuchi Y., Nomura Y., Ogurisu O., “On the number of discrete eigenvalues of a discrete Schrödinger operator with a finitely supported potential”, Lett. Math. Phys., 106:11 (2016), 1465–1478 |
23. |
Hempel R., “On the asymptotic distribution of the eigenvalue branches of the Schrödinger operator $H\pm\lambda W$ in a spectral gap of $H$”, J. Reine Angew. Math., 339 (1989), 38–59 |
24. |
Hong S. Y., Lifshits M., Nazarov A., “Small deviations in $L2$-norm for Gaussian dependent sequences”, Electron. Commun. Probab., 21:41 (2016), 1–9 |
25. |
Isozaki H., Korotyaev E., “Inverse problems, trace formulae for discrete Schrodinger operators”, Ann. Henri Poincaré, 13:4 (2012), 751–788 |
26. |
Isozaki H., Morioka H., “A Rellich type theorem for discrete Schrödinger operators”, Inverse Probl. Imaging, 8:2 (2014), 475–489 |
27. |
Korotyaev E., Trace formulae for Schrödinger operators on lattice, arXiv: 1702.01388 |
28. |
Korotyaev E., Laptev A., “Trace formulae for Schrödinger operators with complex-valued potentials on cubic lattices”, Bull. Math. Sci., 8:3 (2018), 453–475 |
29. |
Korotyaev E., Moller J., Weighted estimates for the discrete Laplacian on the cubic lattice, arXiv: 1701.03605 |
30. |
Коротяев Е. Л., Сабурова Н. Ю., “Спектральные оценки для оператора Шрёдингера на периодических дискретных графах”, Алгебра и анализ, 30:4 (2018), 61–107 |
31. |
Korotyaev E., Saburova N., “Schrödinger operators on periodic graphs”, J. Math. Anal. Appl., 420:1 (2014), 576–611 |
32. |
Korotyaev E., Saburova N., “Effective masses for Laplacians on periodic graphs”, J. Math. Anal. Appl., 436:1 (2016), 104–130 |
33. |
Korotyaev E., Saburova N., Scattering on periodic metric graphs, arXiv: 1507.06441 |
34. |
Levin D., Solomyak M., “Rozenblum–Lieb–Cwikel inequality for Markov generators”, J. Anal. Math., 71:1 (1997), 173–193 |
35. |
Lieb E., “The number of bound states of one-body Schrödinger operators and the Weyl problem”, Geometry of the Laplace Operator, Proc. Sympos. Pure Math. (Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., 36, Amer. Math. Soc., Providence, RI, 1980, 241–252 |
36. |
Lifshits M., Nazarov A., “$L_{2}$-small deviations for weighted stationary processes”, Mathematika, 64:2 (2018), 387–405 |
37. |
Molchanov S., Vainberg B., “Bargmann type estimates of the counting function for general Schrödinger operators”, J. Math. Sci., 184:4 (2012), 457–508 |
38. |
Mohar B., “The spectrum of an infinite graph”, Linear Algebra Appl., 48 (1982), 245–256 |
39. |
Parra D., Richard S., “Spectral and scattering theory for Schrödinger operators on perturbed topological crystals”, Rev. Math. Phys., 30:4 (2018), 1850009 |
40. |
Post O., Spectral analysis on graph-like spaces, Lecture Notes in Math., 2039, Springer, Heidelberg, 2012 |
41. |
Розенблюм Г. В., “Распределение дискретного спектра сингулярных дифференциальных операторов”, Докл. АН СССР, 202:5 (1972), 1012–1015 |
42. |
Розенблюм Г. В., “Распределение дискретного спектра сингулярных дифференциальных операторов”, Изв. вузов. Мат., 1976, № 10, 75–86 |
43. |
Розенблюм Г. В., Соломяк М. З., “О спектральных оценках для операторов типа Шрёдингера: случай малой локальной размерности”, Функц. анал. и его прил., 44:4 (2010), 21–33 |
44. |
Rozenblum G., Solomyak M., “Counting Schrödinger boundstates: semiclassiecs and beyond”, Sobolev Spaces in Mathematics. II, Int. Math. Ser. (N.Y.), 9, Springer, New York, 2009, 329–354 |
45. |
Rozenblum G., Solomyak M., “On the spectral estimates for the Schrödinger operator on $\mathbb{Z}^d$, $d\ge3$”, J. Math. Sci. (N.Y.), 159:2 (2009), 241–263 |
46. |
Rozenblum G., Solomyak M., “On spectral estimates for the Schrödinger operators in global dimension $2$”, Алгебра и анализ, 25:3 (2013), 185–199 |
47. |
Shaban W., Vainberg B., “Radiation conditions for the difference Schrödinger operators”, J. Appl. Anal., 80 (2001), 525–556 |
48. |
Shargorodsky E., “On negative eigenvalues of two-dimensional Schrödinger operators”, Proc. Lond. Math. Soc., 108:2 (2014), 441–483 |
49. |
Слоущ В. А., “Приближенное коммутирование убывающего потенциала и функции от эллиптического оператора”, Алгебра и анализ, 26:5 (2014), 214–226 |
50. |
Слоущ В. А., “Дискретный спектр периодического оператора Шрёдингера с переменной метрикой при возмущении неотрицательным быстро убывающим потенциалом”, Алгебра и анализ, 27:2 (2015), 196–210 |
51. |
Sunada T., Topological crystallography, Surveys Tutorials Appl. Math. Sci., 6, Springer, Tokyo, 2013 |